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PROJECT SUMMARY 

BIOLOGY-INSPIRED AUTONOMOUS CONTROL 
 

AFOSR Laboratory Research Task 00MN02COR 
 

Johnny Evers, Principal Investigator 
Flight Vehicles Integration Branch, Munitions Directorate 

Air Force Research Laboratory, Munitions Directorate 
Eglin AFB, FL 

 
Abstract                  
The goal of this project is to motivate development of control concepts for autonomous munitions that 
overcome limitations of conventional approaches by applying principles derived from studying the 
biology of flying organisms. The research is focused on understanding the mechanisms of biological 
flight through collaboration with various experimental biology academic research laboratories around the 
world. This exploration of biological flight includes behavior, vision and other sensory systems, flapping 
flight mechanics and aerodynamics, and flight control. The research focus addresses two broad, 
interrelated research areas: concepts for aeroelastic, propulsive flight inspired by the biomechanics, 
aerodynamics, sensing and neurobiology of flapping flight and wide field sensory-response inspired by 
the behavior and neurobiology of associated with spatial orientation, target pursuit and navigation in 
insects, birds and bats. With insight from these biology studies, the research seeks to motivate and 
develop new guidance and control concepts, theory, and methods for advanced munitions and micro air 
vehicle programs. 

Recent Progress                  
Publications listed below highlight some of the research conducted under this project over the past two 
years.  The first paper investigates the potential for load sensors on small air vehicle aerodynamic 
surfaces to enhance body platform stability. Two complementary techniques are explored: one using body 
torque error to control actuator position and the other using body force sensing to compensate for high 
optical feedback latency. The benefits of responding reflexively to forces on the aerodynamic surfaces 
include low latency, a reference frame inherently consistent with the control actuation, and alleviation of 
the necessity for control based explicitly on aerodynamic characterization. This paper uses 6DOF 
simulation to demonstrate the robustness derived from load sensing in a turbulent flow field with high 
levels of plant uncertainty and optical feedback latency. The results of this paper suggest that direct 
sensing of forces acting on the body can significantly enhance the robustness and performance of an 
attitude control system, perhaps giving insight into how natural systems can fly with high levels of 
damage, coarse sensors, and large sensorimotor information processing latencies. 
 
The second paper is motivated by a desire to develop analytical formulations for cooperative defensive 
strategies against predator(s). A single-pursuer, two-evader differential game with a novel cost functional 
is formulated. Each of the three agents are modeled as mass less particles that move with constant 
velocity. The pursuer attempts to capture either of the evaders while minimizing its cost. Simultaneously, 
the evaders strive to maximize the pursuer’s cost. The proposed cost functional represents the increased 
cost to the pursuer when presented with multiple, potentially dangerous targets. It captures the effect of 
cooperation between the evaders. In order to solve the game, optimality conditions for the equilibrium 
strategies are developed. The resulting system of ordinary differential equations is then integrate 
backwards in time from the terminal conditions to generate the optimal trajectories of the three agent 
system. The resulting trajectories display cooperative behaviors between the two evaders, which are 
qualitatively similar to behaviors found in predator-prey interactions in nature. A brief description of 
singular surfaces is also included. 
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The third paper discusses the collection, post-processing and subsequent evaluation of flight data of 
butterflies, in various free flight scenarios in a quasi-natural environment. A vision tracking system is 
used to obtain the flight data. This in turn is used to determine estimates of the motion of different body 
parts of the insect, including the abdomen and the wings. These estimates are subsequently analyzed with 
a view to establishing the manner in which the insect adapts the motion of its abdomen to work in tandem 
with the motion of its wings. Furthermore, the manner in which this adaptation changes through different 
flight phases is studied.  
 
The fourth paper explores the issues of control of aeroelastic wing micro autonomous aerial systems. 
Controllers designed using methods applicable to larger aircraft are unlikely to realize the agile flight 
potential of flexible wing micro autonomous aerial systems airframes. In this paper, two Euler-Bernoulli 
beams connected to a rigid mass represent a conceptual model of an aeroelastic wing micro autonomous 
aerial system. Continuous Sensitivity Equation Methods are employed to examine the sensitivity of the 
controlled state with respect to variation of the HInfinity control parameter, with the primary goal being to 
gain insight into the flexible dynamics of the system in order to exploit the flexibility for control 
purposes. The paper further examines functional gains in order to determine optimal sensor placement 
while taking advantage of the flexibility of the micro autonomous aerial systems model. 
 
The final paper of this collection addresses some of the technical challenges associated with development 
of bird or insect size micro autonomous aerial systems. It takes the perspective that agile micro 
autonomous aerial systems with their layers of human supervision represent complex, highly nonlinear 
multi-scale dynamical systems. After a brief discussion of some issues of scale for such systems and 
current research investigating those issues, the paper focuses on the idea of autonomy associated with 
multi-scale dynamical systems. Agile micro autonomous aerial systems currently exist only in nature (i.e., 
insects, birds, bats). Consequently, the paper considers autonomy in manmade micro autonomous aerial 
systems from a biological perspective. It introduces a conjecture that functional system characteristics 
associated with the capabilities of living flying organisms may require levels of response variation and 
flexibility that are not associated with, and perhaps will not be tolerated in manmade critical systems. 
Although this paper does directly address questions of ethics associated with the deployment of critical 
autonomous systems, it attempts to provide some insight into how those important questions may 
naturally emerge when any degree of robustness is imposed as a design criterion for manmade agile 
autonomous systems. 
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Attitude Control Augmentation Using Wing Load Sensing - A
Biologically Motivated Strategy

Rhoe A. Thompson∗ Johnny H. Evers† Kelly C. Stewart‡

AFRL/RW, Eglin AFB, FL, 32542, USA

Many flying animals are able to achieve highly robust flight without feedback from dedicated angular rate
sensors. In general, these animals use their vision systems to provide attitude rate and orientation information.
Limitations of vision based measurements for stabilizing the body include the high level of latency incurred in
the visual processing system and the need to maintain some level of ocular isolation in order to achieve adequate
image quality. This paper investigates the potential for load sensors on the aerodynamic surfaces to enhance
body platform stability. Two complementary techniques are explored: one using body torque error to control
actuator position and the other using body force sensing to compensate for high optical feedback latency. The
benefits of responding reflexively to forces on the aerodynamic surfaces include low latency, a reference frame
inherently consistent with the control actuation, and alleviation of the necessity for control based explicitly
on aerodynamic characterization. This paper uses 6DOF simulation to demonstrate the robustness derived
from load sensing in a turbulent flow field with high levels of plant uncertainty and optical feedback latency.
The results of this paper suggest that direct sensing of forces acting on the body can significantly enhance the
robustness and performance of an attitude control system, perhaps giving insight into how natural systems can
fly with high levels of damage, coarse sensors, and large sensorimotor information processing latencies.

Nomenclature

ψ Azimuth or Yaw Euler Angle ωn Natural Frequency
θ Elevation or Pitch Euler Angle J Moment of Inertia
φ Bank or Roll Euler Angle ζ Damping Ratio
V Inertial Velocity Magnitude Kp,Kd Proportional and Derivative Control Gains
[p, q, r] Body Angular Rate Components Kt Gain Associated with Torque Feedback
b Reference Lateral Length ∆topt Optical Feedback Latency
c Reference Longitudinal Length θm, θ̇m, Tm Measured Angle and Torque States
LQR Linear Quadratic Regulator PD Proportional Derivative Control
MAV Micro Air Vehicle PID Proportional Integral Derivative Control
6DOF Six Degree of Freedom Simulation PDT Proportional Derivative Torque Control
GenMAV Generic Micro Air Vehicle

I. Introduction

Insects are commonly used as research subjects for flight control physiology studies due to the reduced complex-
ity of their morphology, physiology, and behavioral response. The ability of insects to perform precision navigation
is also widely studied.1 2 Flying insects are abundant and readily available, and they are considered models for the
characteristics desired in man-made micro-air vehicles.3 4 Insects robustly deal with damage to their bodies and uncer-
tainty in their environments. They are adaptable, autonomous, and can readily change behavioral objectives. Insects,
in all of their various forms, have a wide array of discrimination and target-tracking capabilities, using optical, acous-
tic and chemo-receptive modalities.5 6 7 All flying insects appear to take advantage of optical rate feedback in their
flight control systems. Insects of the order Diptera, flies, also use mechanoreceptive angular rate feedback from the
halteres.8 9 10 Those insects having only optical rate feedback are capable of remarkable flight performance. Given the
amount of latency inherent in the optical feedback pathways, the specific mechanisms through which flight stability is

∗rhoe.thompson@eglin.af.mil, AFRL/RWGG, AIAA Member
†johnny.evers@eglin.af.mil, AFRL/RWAV, AIAA Member
‡kelly.stewart@eglin.af.mil, AFRL/RWGN, AIAA Member
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achieved remain unclear.11 It is this characteristic that is the motivation for the work described in this paper.
The intent of this research is to understand the benefits of load sensing on aerodynamic surfaces for attitude

stabilization. The bodies of animals are sensor rich. Strain sensors that respond to internal and external forces on the
exoskeleton are common if not universal.12 13 In addition to having influence on high-level behaviors, these sensors
have evolved to provide low-latency reflexive response as well. The wings of insects have cuticular strain sensors,
referred to as campaniform sensilla, distributed along the structural veins, as well as chordotonal organs that stretch and
respond to motion of the wing hinge.14 These sensors encode magnitude of the wing load through species-dependent
mechanisms.15 The pathways to the wing control muscles are short, with low latency, leading to speculation that they
are directly involved in flight control.16 Given the relatively high level of latency involved in rate feedback from the
insect visual system, it is likely that the wing load sensors play a direct role in attitude stabilization. This role is
especially indicated in natural systems that do not have a direct, low-latency means of measuring angular rate attached
to the main body, i.e., halteres or other gyroscopic organs.

The point of departure for this activity was a subsequently discarded hypothesis: strain sensed on the wings is
proportional to angular rate in the body frame. Therefore, by reacting to wing strain, a winged vehicle could apply
a dissipative damping force that ensures attitude stability. The origin of this thought process was the understanding
that a steady state roll motion would induce a differential angle of attack on the wings proportional to roll rate. This
differential angle of attack would in turn result in a differential force, or roll damping, on the wings which might be
sensed and controlled. Therefore, the differential wing load would be proportional to roll rate. While the described rate
damping effects are very real, the inability to separate other dynamic causal effects, e.g., control surface deflection and
transient gusts, from the steady state mechanism hypothesized was felt to be insurmountable. Alternative mechanisms
were therefore pursued.

Attitude BodyActuator

Attitude
Command

Torque
Command

Control
Surface
Position

Optical &
Mechanosensor

a.

Attitude 
Control

Body 
Dynamics

Actuator
Response
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Figure 1. a) Baseline attitude control without load feedback. Actuators assumed have a first order open-loop response. b) Attitude with
load feedback to optimize responsiveness of the attitude controller and to reject disturbances and errors in actuated body torque. The
closed-loop actuator response is modeled as a damped second order system.

In its simplest form, the attitude control of a flight vehicle can be described as in Figure 1a. Angular rate and
orientation resulting from the system dynamics are sensed, and the measurements are fed back into the attitude control
system. The attitude control system then commands a control surface response, intended to produce a torque on the
body in order to reduce attitude state errors. There are two fundamentally distinct ways in which strain measurements
might influence the attitude control design: through regulation of the actuation commands sent to the control surfaces
and through augmentation of the attitude controller, Figure 1b. In the first way, the measured error in the body torque
achieved by the vehicle control surfaces can be driven to zero using the actuators. The source of this error might be un-
certainty in the plant characteristics or a torque disturbance on the body from external sources such as turbulence. The
second way that load sensing might be used in the control system, direct use in the attitude control formulation, has
multiple possibilities as well. Attitude control systems normally include proportional and integral control on sensed
attitude, with damping and robustness provided through rate feedback. A disturbance force acting on the body must
produce body angular rate before the controller moves the control effectors to cancel it. If some direct measure of
angular acceleration could be sensed, the attitude controller could potentially obtain a more optimal tracking response.
In addition, if torque was estimated from the strains sensed, with knowledge of the inertia, a low latency measure of
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angular acceleration could be obtained. With this estimate, high-latency optical angular rate feedback, or phase error,
might be directly mitigated to a first order.

II. Model and Simulation Description

Figure 2. Attitude control demonstrations were based on a model of the AFRL GenMAV vehicle. Aerodynamic coefficients were calculated
using AVL. Models assumed a configuration with ailerons, not shown in the hardware depicted.

The specific mechanisms by which load sensing is used in natural systems for flight stabilization are not known. To
demonstrate potential applications and the associated benefits, a model of the Air Force Research Laboratory (AFRL)
developed Generic Micro-Air-Vehicle (GenMAV) was employed, as shown in Figure 2. This choice avoided the
complexity of modeling a flapping wing system, allowing for more straightforward conceptualization of engineering
applications, while still providing direct insight into potential biological mechanisms.

GenMAV is a conventionally-shaped air vehicle with a high-wing configuration, a wingspan of 24" and a chord
of 5". It has a conventional tail with a horizontal surface of 12" and a vertical surface of 4.6". The fuselage is 16.5"
in length and approximately 3" in diameter at its widest point. GenMAV is a bank-to-turn vehicle controlled by a pair
of elevons that make up 50% of the chord on the horizontal stabilizer. Its body and wings are comprised of carbon
fiber with enough layers to ensure adequate rigidity. For this investigation, the GenMAV is modeled with conventional
ailerons, elevator, and rudder, a different control configuration from the actual hardware design. GenMAV was de-
veloped as a reference vehicle for research conducted within and outside of AFRL.17 The generic design is based on
several iterations of MAVs previously studied in AFRL and provides a convenient baseline from which various MAV
technologies can be explored.18

Control system modeling of the flight vehicle was accomplished in the Matlab SimulinkTMenvironment. The 6DOF
simulation environment was constructed using a direct implementation of the quaternion dynamics model documented
by Phillips.19 20 To provide aerodynamic disturbances, the continuous Dryden turbulence model within the Aerospace
Blockset was used, with the wind speed parameter set to approximately 10 percent of the MAV ground speed. Char-
acterization of the GenMAV vehicle, in order to provide an aerodynamic truth model, was accomplished with the
Athena Vortex Lattice (AVL) code. AVL was developed by Harold Youngren of MIT, and subsequently by Mark Drela
(also of MIT) to provide aerodynamic and flight-dynamic analysis of rigid aircraft with arbitrary configurations.21

The program applies thin airfoil theory to predict the inviscid aerodynamic forces and moments acting on the lifting
surface of an air vehicle. Thin airfoil theory approximates the airfoil as a combination of uniform flow and a vortex
sheet placed along the camber line. This leads to the aerodynamic force and moment being primarily a function of
angle of attack and camber line geometry. Based on the assumptions behind thin airfoil theory, AVL is best suited for
applications involving thin lifting surfaces, i.e., maximum thickness of 12% chord or less, at small angles of attack and
sideslip. In AVL, the lifting surfaces of an aircraft are modeled as single-layer vortex sheets discretized into horseshoe
vortex filaments. Flow is assumed to be quasi-steady and within the limit pertaining to small reduced frequency. This
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translates into the following limits for each of the dimensionless flow rate parameters:

−0.10 <
pb

2V
< 0.10

−0.03 <
qc

2V
< 0.03

−0.25 <
rb

2V
< 0.25.

Given that thin airfoil theory deals with 2-D potential flow, drag due to viscous effects is not calculated in AVL,
and the lift coefficient is a linear function of angle of attack. Overall drag is represented as a combination of lift-
induced drag plus an approximation for parasitic effects. In addition to static coefficients, AVL provides damping
coefficients, including the coupled terms between roll and yaw, and control surface derivatives. The full complement
of aerodynamic coefficients was used for this work.

For demonstration of the benefits of torque feedback, the attitude control was implemented using three independent
PD controllers; body rate and attitude error were assumed to be optically observable. Pitch angle was used directly
to control altitude error. The outer altitude control loop was in the form of PID control, allowing the integral term
to account for gravity bias. The attitude loops were tuned to respond as critically damped second order systems with
nominally a 5 Hz natural frequency. Attitude control output was in the form of a torque command for each body axis;
i.e.,

Commanded Torque = Jθ̈

= −Jω2
n(θm − θcom) − J2ζωnθ̇m (1)

= −Kp(θm − θcom) −Kdθ̇m,

where Kp and Kd are the proportional and derivative control gains, θ is an angular degree of freedom with an associ-
ated inertia J . The desired damping ratio and natural frequency are represented by ζ and ωn, respectively.
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Figure 3. Actuator response models used for load feedback 6DOF demonstrations: a) first order response model, b) second order torque
error regulator. The nominal response time constants for both models were defined to be 17 ms as shown in c). In a) and b), θ represents
the achieved control surface deflection and FT/A represents a nominal scale factor to convert torque to control surface deflection angle.

A nominal first order control surface actuator response model was used for baseline comparison. Alternatively,
closed-loop actuators, which used measured body torque error to drive the ailerons, elevator, and rudder, were modeled
as second order damped torque motors with angular limits at +/- 30 degrees. The natural frequency of the second
order actuator control loop was nominally 20 Hz, having a 17 ms time constant for 63% response. The first order
actuator was also defined with a 17 ms time constant for consistency. Both actuator response models used a common
scale factor, FT/A, derived around straight and level flight conditions to convert torque to angle, Figure 3. Under
nominal conditions, to the degree that the second and first order responses were similar, the airframe response would be
expected to be similar. Under conditions of degraded control realization and non-zero latency, significant differences
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would be expected due to the inability of the controller without torque feedback actuation to reflexively respond to
errors and disturbances.

To demonstrate the potential benefit from augmenting the attitude controller with wing load feedback, a formu-
lation was derived to use the assumed low-latency measurement of body torque to compensate for the destabilizing
influence of high latency in the optical feedback pathway. To derive the control expression used, both inertia and
feedback latency are assumed to be known to some approximation. The control gains associated with measured angle,
θm, angular rate, θ̇m, and torque, Tm, are required:

Commanded Torque = −K̄p(θm − θcom) − K̄dθ̇m,−K̄tTm.

These new gains are found in terms of the gains in (1), the latency, ∆topt, and the inertia, J , using simple Taylor
series approximations:

θ̇est = θ̇m +
Tm
J

∆topt (2)

θest = θm + (θ̇m +
Tm
J

∆topt)∆topt +
Tm
2J

∆t2opt

= θm + θ̇m∆topt +
3Tm
2J

∆t2opt. (3)

Substituting the estimates represented by (2) and (3) for the measured quantities in (1), then collecting terms,
provides the following expressions for the new gains:

K̄p = Kp (4)
K̄d = (Kp∆topt +Kd) (5)

K̄t =

(
Kp

3∆t2opt
2J

+Kd
∆topt
J

)
. (6)

Efforts to develop an optimal attitude control law using body force states to minimize a cost function, as in LQR,
were not complete at the time of this publication.

III. Results

Two test cases were devised to demonstrate the benefit of load sensing on dynamic performance. Both test cases
included the turbulence model previously described and an initial one meter step command in altitude. The first test
case demonstrated performance with and without degraded control response. To model the degraded control response,
the angular response of all control surfaces was cut in half, thereby modeling a 50% degradation in control surface
effectiveness. Linear forces through the center of gravity were not degraded.

Figures 4a and 4b show the roll and yaw attitude in the presence of turbulence and a one meter altitude step com-
mand with no torque feedback. The two time histories represent cases with and without control system degradation.
Figures 4c and 4d show the same two cases with torque feedback to control actuator position. The cases with torque
feedback to the actuator show roughly an order of magnitude better disturbance rejection. Both with and without torque
feedback, an increase in attitude response is seen as a result of the control surface degradation. Figure 5 demonstrates
the increased response of the rudder and aileron in the presence of control degradation without torque feedback, a) and
b), and with torque feedback, c) and d). The control surface positions are similar in character with increased amplitude
for the torque feedback control. As demonstrated by Figure 4, the closed-loop actuator more effectively dealt with the
deviations from the commanded body torques.

The second test case involves introduction of latency into the state feedback that drives the attitude control law. In
animal systems, in particular those that do not have highly dedicated rate sensing physiology, optical flow provides a
primary means for sensing angular motion. In insects, the neuronal processing of vision motion may introduce 30 ms
or more latency into the feedback process, depending on species and ambient light level. This delay would be expected
to have a detrimental impact on the attitude control system. The strain mechanosensors typically have a much more
direct pathway to the muscles that they stimulate. Campaniform sensilla, the load sensors on insects, can induce a
response in the muscles in an order of magnitude less time than that achieved by the vision system. The haltere to
motor neuron pathway in dipertan insects is a well characterized example of this type of quick reflexive response. For
this test case, a latency of 3 ms on the torque feedback and 10 ms on the optical feedback was sufficient to demonstrate
the benefit of closed-loop torque regulation.
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Figure 4. Euler angle response of GenMAV without and with torque feedback to actuators for the case of 50% degradation in control
capability. a) Yaw Euler angle with open-loop rudder control. b) Roll Euler angle with open-loop aileron control. c) Yaw Euler angle with
torque feedback to rudder control. d) Roll Euler angle with torque feedback to aileron control.
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Figure 5. Rudder and aileron control surface response for the case of 50% degradation in control capability (Figure 3). a) Open-loop
rudder response and b) open-loop aileron response. c) and d) show response of the rudder and aileron with closed-loop actuator control.
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Figures 6a and 6b demonstrate that, without torque feedback, a highly oscillatory yaw and roll attitude response
results in the presence of 10 ms of latency. This response is stimulated by turbulent disturbances. Note that the
bandwidths of the attitude loops were tuned for the ideal zero latency case. In contrast, Figures 6c and 6d show the
same comparison with the torque feedback to the actuators. Figure 7 shows the corresponding control surface angles
for the two cases from Figures 6c and 6d. The two curves in this figure depict a very similar response. The fact that
actuator response does not change significantly in the presence of the optical feedback latency indicates that the torque
feedback loop is primarily responsible for mitigating the effect of the turbulence induced torque disturbances. The
improved disturbance rejection delays the onset of system oscillation as latency increases.
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Figure 6. Euler angle response of GenMAV without and with torque feedback to the actuators for the case of 3 ms torque feedback latency
and 10 ms attitude state feedback latency. a) Yaw Euler angle with open-loop rudder control. b) Roll Euler angle with open-loop aileron
control. c) Yaw Euler angle with torque feedback to rudder control. d) Roll Euler angle with torque feedback to aileron control.
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Figure 7. Rudder and aileron control surface response for the case of 3 ms torque feedback latency and 10 ms attitude state feedback
latency (Figures 6c and 6d). a) Open-loop control and b) torque regulated control.

As latency increases further, even with torque feedback to the actuator, the system begins to destabilize as shown
in Figure 8a. In this example, 30 ms of latency was simulated. Figure 8b shows the response with the PD attitude
controller augmented with torque to compensate for the latency (PDT control), reference equations (4)-(6). In this case,
the system responds with some pitch oscillation in response to the one meter step in altitude, but quickly stabilizes,

7 of 10

American Institute of Aeronautics and Astronautics



closely matching the zero latency baseline case. Note that the motion that dominates in all cases described is pitch
motion. There is no mechanism in the defined control scheme to respond to measured z-force error except through
pitch control. The resulting motion to affect a decrease in altitude error is much larger than the residual motion in
yaw and roll. In a flapping wing design, where z-force could be controlled independently, this coupling of degrees of
freedom would not necessarily be required.
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Figure 8. Pitch response for the case of 30 ms optical latency and closed-loop actuator control. Figure a) shows the highly oscillatory
nature of the response without latency compensation. Figure b) shows the improved response with torque augmented attitude control to
compensate for the latency.

IV. Discussion

The results in this paper demonstrate the ability of wing load sensors to improve attitude control robustness and
disturbance rejection in the presence of significant uncertainty in plant characteristics. By directly measuring the
torque around a given axis, the error with respect to the torque commanded by the attitude control law can be reduced
without dependence on known aerodynamic characteristics of the airframe. Through the same mechanism, torque
disturbances on the airframe can be dealt with through high speed reflexive control, leaving the outer attitude control
loop to deal with lower frequency optical tracking. This wing load feedback mechanism may explain the robustness
of insect flight, where significant damage to wings is tolerated and high variations in control performance occur due
to such factors as temperature, age, individual variation, and metabolic state.

The results shown in this paper rely on many assumptions with respect to sensor implementation. Actual imple-
mentation of strain sensors may be a significant hurdle to realization of the results shown. Nature has evolved systems
that rely on large numbers of simple sensors spread throughout the body structure to sense and respond to interaction
with the environment. While individual sensors may be very poor detectors of magnitude, in concert, a number of
simple sensors spread throughout a structure might have a very large effective dynamic range. The human engineering
approach is to build more elaborate sensors that individually achieve the required dynamic range. Inherent in these
approaches is a trade-off between integration complexity and robustness to damage. If one of the many simple sen-
sors associated with the insect wing is not functional, a small price is paid in terms of overall dynamic range, but the
system still functions. If the single, more elaborate sensor on the man-made system is damaged, the result might be
catastrophic. Significant engineering development in materials and manufacturing technology would be required to
duplicate the design paradigm that is prevalent in natural systems. However, similar performance characteristics might
be achievable by mimicking a low-latency, load-based control mechanism without duplicating the sophistication in
materials and manufacturing seen in nature.

To achieve the results shown, either strain sensors would have to be placed near the body on the aero surfaces,
or the angular acceleration of the body would need to be measured directly. With knowledge of the body inertia
characteristics, the net torques on the body could be deduced from the angular accelerations. The feedback to the
modeled closed-loop actuator is an assumed estimate of the net torque on the body. The calculations and calibrations
required to realize actual quantitative estimates of torque around the center of gravity could become very elaborate.
Clearly, nature is not explicitly relying on quantitative estimates of torque around the center of gravity. Natural
designs take maximum advantage of symmetry and the differential effect of control force application across the plane
of symmetry. In fact, strain sensors on the left half of the body may influence left wing control, while sensors on
the right half influence right wing control, without a significant contralateral influence, as in the halteres of flies. The

8 of 10

American Institute of Aeronautics and Astronautics



net effect of the forces would still result in a stabilizing influence. The primary requirement is a signal, related to
the net torque on the body, that can be driven to zero or to a correctly biased state, thereby driving the torque error
to zero. This should be achievable with symmetric placement of strain sensors on the right and left aero surfaces.
Compensation for residual biases can be realized through appropriate application of controller integral terms and the
aerodynamic stability inherent in the basic design.

The fundamental idea of using feedback to eliminate uncertainty in the output of an actuator is not new. For
example, hydraulic torque motors are sometimes implemented with a pressure loop around the valve to reduce the
impact of hydraulic resonance. The same technique is more generally used to eliminate nonlinearities in open-loop
actuator response. Treating the entire airframe as a torque motor with the error driving the control surface state is a
deviation from conventional attitude control techniques. The requirement for a fail-safe feature, in case of feedback
interruption, must be taken into consideration; lacking a feedback signal, the control surfaces will be driven to the
limits in an attempt to reduce the error.

The techniques described in this paper might allow for MAV designs that come closer to the performance and
robustness of natural systems. An additional objective of this research is decreased cost and complexity of MAV
designs. Obtaining this goal is dependent upon replacement of more costly or complex rate sensors. This described
control technique relies on the ability to implement the strain or load sensing transducers and the ability to obtain the
requisite outer loop rate and tracking estimates from multi-use optical sensors. This objective configuration mimics
many insect sensor architectures. Nature is clearly able to achieve remarkable agility, behavioral complexity, and
robustness in extremely small packages through mechanisms that scientists and engineers are only beginning to under-
stand. The human tendency to attribute undue complexity to systems that we do not understand should be considered.
A concept as simple as reflexive response to wing load sensing could potentially explain much about the robustness
and performance capability seen in natural flying systems.
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Abstract— This paper is motivated by a desire to develop an-
alytical formulations for cooperative defensive strategies against
predator(s). We formulate a single-pursuer, two-evader differen-
tial game with a novel cost functional. Each of the three agents
are modeled as massless particles that move with constant
velocity. The pursuer attempts to capture either of the evaders
while minimizing its cost. Simultaneously, the evaders strive
to maximize the pursuer’s cost. The proposed cost functional
represents the increased cost to the pursuer when presented
with multiple, potentially dangerous targets. It captures the
effect of cooperation between the evaders. In order to solve the
game, we develop the optimality conditions for the equilibrium
strategies. We then integrate the resulting system of ordinary
differential equations backwards in time from the terminal
conditions to generate the optimal trajectories of the three agent
system. The resulting trajectories display cooperative behaviors
between the two evaders, which are qualitatively similar to
behaviors found in predator-prey interactions in nature. Brief
description of singular surfaces is also included.

I. INTRODUCTION

The use of unmanned mobile systems is rapidly increasing
due to a variety of reasons including their relative low
cost and their ability to operate in hazardous environments
with minimal risk to human life. Multiple cheap unmanned
systems, or agents, can be deployed simultaneously to ac-
complish a task or mission. A very important application of
unmanned systems is in the modern battlefield to perform
tasks ranging from surveillance to direct engagement. In
these scenarios, the group of agents are often in direct
competition with an opposing force. It is therefore impor-
tant to find algorithms or strategies that can systematically
maximize the value offered by such groups of agents.

A natural setting for studying such issues is game theory.
In this paper, we introduce a single-pursuer, two-evader game
with a novel integral cost functional. This cost functional is
intended to represent the risk of damage or injury to the
pursuer or the additional energy or computational expense
needed to monitor multiple evaders. During the game, the
pursuer strives to minimize this cost while attempting to
capture one of the evaders. Simultaneously, the evaders
attempt to maximize the pursuer’s cost in the hopes of
making pursuit unattractive from certain initial conditions,
thereby protecting themselves and their fellow evader. The

*This material is based upon work supported under a National Science
Foundation Graduate Research Fellowship to Zachariah Fuchs.

**Pramod P. Khargonekar was supported by the Eckis Professor endow-
ment at the University of Florida.

proposed cost functional is a combination of a constant time
penalty and evader generated cost. The evader generated cost
component is based on the relative configuration of the three
agents and possesses particular characteristics that encourage
the evaders to attempt flanking maneuvers to surround the
pursuer. As a direct result of the evader generated cost
component, the optimal evader strategies exhibit cooperative
defensive behaviors. It should be noted that cooperation is
not directly imposed as a requirement of the solution. Instead,
cooperation emerges as the optimal strategy.

The cooperative behaviors exhibited in the solution to
this game are qualitatively similar to numerous examples
of prey strategies used in response to attacking predators.
Some examples include red-wing black bird nest defense [1],
meerkat predator mobbing [2], and predator identification in
guppy schools [3]. Such animal behaviors have been studied
extensively within the biological community, and theories
that explain their evolutionary stability and advantages have
been proposed [4]. Often, these theories utilize principles
from game theory. In particular the concept of repeated
games is commonly deployed for this purpose [5], [6]. In
these approaches, the potential behaviors are represented
as strategies with assigned utilities that are inferred from
empirical data or based on the genetic similarity between
individuals. The different strategies are then shown to in-
crease the survivability or fitness of the genes that describe
these behaviors over time or multiple generations. Although
these approaches explain how cooperation is optimal in
the evolutionary sense, they do not directly address how
cooperation is beneficial at the day-to-day, system level. One
goal of this paper is to show how cooperation can arise as
the optimal strategy given particular system dynamics and
cost functional.

Although biologically inspired, our main motivation for
the the scenario presented in this paper and the resulting
cooperative defensive behaviors comes from the idea of
cooperative defense of high value assets. Just as in nature,
there are rarely any defenseless targets, and attacking forces
usually elect not to attack a target if the potential for injury
or high cost outweighs the benefit of the attack mission.
Thus, by cooperating to combine their defensive resources,
a group of evaders can make engagement more costly to the
attacker than if they acted independently. This increased cost
may then surpass a tolerance level for the potential attacker
and prevent an attack before it ever occurs. For example,



through cooperation a group of unmanned drones could be
used to protect vulnerable high-value targets, such as slow
moving cargo planes, supply ships, or a very important
person. If the high value target was attacked, the drones
could then engage in a cooperative defensive maneuver. This
cooperative defensive maneuver could be sufficient to protect
the intended asset.

Formally introduced by Isaacs [7], pursuit-evasion games
and their variants have been used to solve a wide range
of problems. Recently, the authors in [8] use the same
analysis techniques of this paper to examine a continuous
time, visibility based, single-pursuer, single-evader game in
an environment containing polygonal obstacles. There have
been several papers that focused on combat with realistic
dynamics [9], [10]. Pursuit-evasion games have also been
used to generate defensive strategies of a single evader.
In [11], the authors determine the optimal strategies for
electronic counter measure use when initial conditions are
known. Because of the ability to optimize multiple and
sometimes conflicting value functions, game theory lends
itself to the analysis of cooperative systems. In [12], the
authors modify Isaacs’ standard single-pursuer homicidal
chauffeur game by allowing multiple pursuers and propose
a daisy-chain formation that enables capture for a wider
range of parameters. A multi-evader pursuit evasion game
was posed in [13], but the cost functional was based solely on
elapsed time. Because there was no direct cost generated by
the evaders, the resulting evader behaviors exhibit a scattered,
fleeing pattern instead of a cohesive, cooperative defensive
strategy as seen in our formulation. The situation in which
the evader can potentially capture or harm the pursuer is also
presented in [14] and [15].

In Section II, we describe the system under consideration.
We also develop an alternative coordinate system, which
will simplify later analysis. A novel evader generated cost
function is then developed that captures the synergy between
the two evaders and serves as the primary motivation for
cooperation. Using the developed instantaneous cost, we then
describe the pursuit evasion game under analysis. In Section
III, we develop the optimality conditions and perform the
necessary integration to generate the optimal agent trajecto-
ries. Finally, in Section IV we summarize our findings and
describe future research directions.

II. SYSTEM AND GAME FORMULATION

In this section, we will describe the three agent system
under analysis and define the kinematic equations that control
their motion. We will also introduce a relative coordinate sys-
tem and corresponding kinematic equations, which will prove
to be more compact and intuitive for our analysis. After the
system kinematics are defined, we develop an integral cost
function which is based on the relative configuration of the
three agents. In the third section, we lay out the motivations
for a two-team differential game using the defined system
kinematics and pursuer cost function.

A. Kinematics of Agents

Consider a dynamic system with three agents: two evaders
and a pursuer. For brevity, we will often refer to the two
evaders as E1 and E2 and the pursuer as P. The three agents
are modeled as massless particles moving with simple motion
about an obstacle-free, infinite plane. Within this paper, two
different but equivalent coordinate systems are used. The
first coordinate system is referred to as the global coordinate
system and will be used to plot agent trajectories and other
visualizations. In this coordinate system, the position of
each agent is defined by its own pair of standard Cartesian
coordinates (x,y). The velocities of Ei i = (1,2) and P are
defined as (vi, θ̂i) and (vp, ψ̂) respectively. Here vi and vp
represent the magnitude of velocities and θ̂i and ψ̂ represent
the heading. The heading angles are measured counter-
clockwise from the positive x-direction. The heading angle
is the control variable for each agent, and we assume vi
and vp are constant. The state of system is completely
defined by the 6-tuple, xG = (x1,y1,x2,y2,xp,yp). The global
coordinate system is depicted graphically in Fig. 1a. The
global kinematic equations of the system are thus

ẋp = vp cos ψ̂ ẏp = vp sin ψ̂

ẋ1 = v1 cos θ̂1 ẏ1 = v1 sin θ̂1 (1)
ẋ2 = v2 cos θ̂2 ẏ2 = v2 sin θ̂2

We will now introduce a second coordinate system, which
will represent the locations of each of the evaders relative
to the position of the pursuer. This representation will allow
us to reduce the number of dimensions in later analysis and
will be referred to as the relative coordinate system. In this
coordinate system, the state of the system is represented
by the following 6-tuple, xR = (d1,d2,α,β ,x,y). The first
two coordinates, d1 and d2, represent the distance between
E1 and P and the distance between E2 and P respectively.
The angle α is measured counter-clockwise from

−−→
PE1 to−−→

PE2. The angle β represents the global rotation of the
three agent system and is measured counter-clockwise from
the positive x-direction to

−−→
PE1. The x and y coordinates

represent global position of the pursuer. The six coordinates
can be separated into two groups. The first group, (d1,d2,α),
contains all necessary information to describe the relative
configuration of the three agents. The second group, (β ,x,y),
contains the global rotational and translation information. In
the relative coordinate system, the evader heading angle, θi,
is measured counter-clockwise from

−→
PEi in order to simplify

the kinematic equations. Similarly, the pursuer heading angle,
ψ , is measured counter-clockwise from

−−→
PE1. The relative

coordinate system is graphically depicted in Fig. 1b.
The global and relative representations are related through

the following equations.

xp = x yp = y (2)
x1 = d1 cos(β )+ x y1 = d1 sin(β )+ y (3)

x2 = d2 cos(β +α)+ x y2 = d2 sin(β +α)+ y (4)
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The control variables are related as follows.

θ̂1 = θ1 +β θ̂2 = θ2 +β +α ψ̂ = ψ +β (5)

Using the variables in the reduced model with the dynam-
ics in (2), the reduced space kinematic equations are shown
below.

ḋ1=v1 cosθ1− vp cosψ (6)
ḋ2=v2 cosθ2− vp cos(ψ−α) (7)
α̇= v2

d2
sinθ2− v1

d1
sinθ1

+vp

(
1
d1

sinψ− 1
d2

sin(ψ−α)
)

(8)

β̇= 1
d1
(sinθ1− vp sinψ) (9)

ẋ=vp cos(ψ +β ) (10)
ẏ=vp sin(ψ +β ) (11)

We further condition these equations with the following
two restrictions.

d1 ≥ dc and d2 ≥ dc (12)
v1 < vp and v2 < vp (13)

The first restriction, (12), requires that both distances are
greater than or equal to the capture distance, dc. The second
restriction, (13), requires that the pursuer is faster than both
of the evaders, which ensures that the pursuer is capable of
capturing an evader in finite time.

B. Instantaneous Cost Function

In this section, we develop an instantaneous cost function
dependent on the relative positions of the two evaders and
pursuer. The developed cost function captures the synergy
between the evaders and serves as the primary incentive for
cooperation within the evading team. With respect to our
biological inspiration, this cost could model the risk of injury
to a predator caused by the prey. In terms of a man-made
example, the evader-generated cost could represent the risk
of damage to an attacking aircraft from the targets’ defensive
capabilities.

Each evader generates an individual cost, which is a
function of distance between the evader and pursuer. In this
paper, exponential cost functions are used for E1 and E2:

C1(d1) = k1ek2(dc−d1) , C2(d2) = k1ek2(dc−d2) (14)

where the constant k1 defines the maximum value of the cost
and k2 controls how quickly the cost decays as a function
of distance. These functions were chosen because of their
simplicity, but more complex functions could be used to
model particular predator-prey or attacker-target interactions.

We provide the pursuer the ability to counteract or reduce
these individual costs. Returning to our aircraft attack exam-
ple, the aircraft may be able to perform evasive maneuvers or
deploy countermeasures if a threat is detected. The detection
of the threat may be relatively straightforward if only a single
target exists, but in the case of multiple targets, it may be
necessary to allocate finite sensory or processing capabilities
between multiple threats. The decreased vigilance of the
targets at the individual level increases the overall risk of
damage.

We model this effect by defining a direction of sensory fo-
cus, γ , for the pursuer. The direction of focus is independent
of the motion of P and is measured counter-clockwise from−−→
PE1. By steering the direction of focus toward an evader,
the pursuer reduces the cost generated by that evader. The
resulting reduced costs are a product of the cost reduction
function and the original evader cost:

CE1(γ,x)=S(γ)C1(d1) (15a)
CE2(γ,x)=S(γ−α)C2(d2) (15b)

where S(·) represents the cost reduction as a function of
the difference between the sensory focus angle and the
angle towards the evader. In this paper we use the following
definition for S(·).

S(·) = 1
2 [1− cos(·)] (16)



The total evader-generated cost for the pursuer is the sum
of the individual evader costs:

CE(γ,x) =CE1(γ,x)+CE2(γ,x) (17)

The pursuer must then select γ∗ such that that the total cost
is minimized at any moment in time. The minimizing γ∗

satisfies the following conditions

cosγ
∗ = C1+cos(α)C2

ρ
sinγ

∗ = sin(α)C2
ρ

(18)

where

ρ=
√

C2
1 +2C1C2 cosα +C2

2 (19)

Substituting the optimal γ-strategy, (18)-(19), into (17)
provides the minimum cost:

CE(γ
∗,x)= 1

2

[
C1 +C2−√
C2

1 +2C1C2 cosα +C2
2

]
(20)

It should be noted that this function evaluates to zero
when α = 0. This situation allows the pursuer to monitor
both evaders simultaneously. The evader cost function is
maximized when α = π , which represents the scenario in
which the evaders have flanked the pursuer and it can only
direct its beam of focus at the most costly pursuer.

Because γ does not affect the system dynamics and the
pursuer can instantaneously choose any value for γ , we
will assume the pursuer always chooses γ∗. As a result,
we will consider the instantaneous evader-generated cost as
a function of state alone and no longer consider γ in the
development of the game. An additional constant cost term,
ct , is added to the evader-generated cost in order to represent
a time or energy penalty for the pursuer. The total pursuer
instantaneous cost is then

CT (x) =CE(x)+ ct (21)

C. Game Formulation

The instantaneous cost function (21) is integrated over
time to calculate the total cost to the pursuer over a single
play of the game. In this game, termination occurs when the
pursuer captures one of the evaders, which happens when
the state passes through the terminal surface:

Γ(x) = (d1−dc)(d2−dc) = 0 (22)

The cost to the pursuer for a game starting at initial time t0
and reaching the terminal surface at time t f is then defined
as:

J =
∫ t f

t0
CE(x)+ ct dt (23)

We can now pose a differential game in which the goal
of the two evaders is to maximize the integral cost to the
pursuer, (23). By inspection, it can be seen that in general
the evaders should strive to delay termination of the game in
order to continue the integration of cost. Simultaneously, the

the pursuer strives to minimize its cost my terminating the
game as soon as possible while attempting to avoid potential
flanking maneuvers of the evaders.

Although there are three agents in this system, the two
evaders share a common goal, maximize the pursuer’s cost.
Therefore, the evaders can be thought of as a single player
with two control variables. This perspective results in a two-
player zero-sum game; one player is the pursuer, while the
other player represents the evading team. We can then define
a function V (x), which represents the value of a game that
starts at point x and in which both players implement their
optimal strategies.

In this paper, we assume that all agents possess complete
knowledge of all state variables. The pursuer does not pos-
sess knowledge of either evader’s control while the evaders
are ignorant of the pursuer’s control as well.

III. SOLUTION TO THE GAME

In this section we will develop the solution to the game.
For this paper, we will examine the case where v1 = v2 =
1, k1 = k2 = 1, and ct > 0. It is assumed that t0 = 0. We
will first calculate the optimality conditions that describe the
optimal control strategies. Using the calculated optimality
conditions, we numerically integrate backwards in time to
generate the optimal trajectories. We will then discuss some
of the interesting singular surfaces generated within the state-
space and their effects on the optimal state trajectories. All
of the following calculations are performed using the relative
coordinate system.

A. Optimality Conditions for the Game of Attack

In order to find the optimal control strategies and the
resulting state trajectories, we begin by calculating the op-
timality conditions of differential games first described by
Rufus Isaacs [7]. Using the defined kinematic equations, (7)-
(11), and the cost functional (21), the Hamiltonian, H, is
introduced as

H = λ
T f(x,up,ue)+CT

= λ1ḋ1 +λ2ḋ2 +λα α̇+

λβ β̇ +λxẋ+λyẏ+CT (24)

The vector λ =
(

λ1 λ2 λα λβ λx λy
)T contains the ad-

joint variables conjugate to the kinematic equations. The
adjoint equations are found by taking the partial derivative
of the Hamiltonian with respect to their respective state
component:

λ̇1 = − ∂H
∂d1

=−λα
∂α̇

∂d1
− ∂CT

∂d1
(25)

λ̇2 = − ∂H
∂d2

=−λα
∂α̇

∂d2
−λβ

∂ β̇

∂d2
− ∂CT

∂d2
(26)

λ̇α = − ∂H
∂α

=−λ2
∂ ḋ2
∂α
−λα

∂α̇

∂α
− ∂CT

∂α
(27)

λ̇β = − ∂H
∂α

=−λx
∂ ẋp
∂β
−λy

∂ ẏp
∂β

(28)

λ̇x = − ∂H
∂x = 0 (29)

λ̇y = − ∂H
∂y = 0 (30)



The boundary conditions, Ψ, for the game are

Ψ =



d1(t0)−d10
d2(t0)−d20
α(t0)−α0
β (t0)−β0
x(t0)− x0
y(t0)− y0

(d1(t f )−dc)(d2(t f )−dc)


= 0 (31)

where d10, d20, α0, β0, x0, and y0 are the initial values of
their respective state components at the start of the game. In
order to determine the boundary constraints on the adjoint
variables, we use the boundary conditions, (31), to create a
function of terminal conditions, Φ:

Φ = ν
T

Ψ (32)

where ν = ( ν1 ν2 ν3 ν4 ν5 ν6 ν7 )
T contains the adjoint

variables conjugate to the boundary constraints of the state.
Taking the partial derivatives of (32) with respect to the state
components provides the terminal conditions for the adjoint
variables:

λ1(t f ) =
∂Φ

∂d1(t f )
= ν8(d2−dc) (33)

λ2(t f ) =
∂Φ

∂d2(t f )
= ν8(d1−dc) (34)

λα(t f ) =
∂Φ

∂α(t f )
= 0 (35)

λβ (t f ) =
∂Φ

∂β (t f )
= 0 (36)

λx(t f ) =
∂Φ

∂x(t f )
= 0 (37)

λy(t f ) =
∂Φ

∂y(t f )
= 0 (38)

Using the adjoint derivatives, (28)-(30), and the terminal
constraints, (36)-(38), it is found that

λβ (t) = 0 λx(t) = 0 λy(t) = 0 (39)

Substituting (39) into (24), results in a simplified Hamilto-
nian, which is dependent only on the components of the state
that describe the relative configuration of the three agents:

H = λ1ḋ1 +λ2ḋ2 +λα α̇ +CT (40)

The next step in solving the game is to determine the
optimal strategies for the three agents, which we will denote
as θ ∗1 , θ ∗2 , and ψ∗. For regions in which the gradient of
the value function is continuous, the optimal strategies must
satisfy two conditions, which are often referred to as Isaacs
Conditions. The regions in which the value function or its
gradient is discontinuous are called singular surfaces and will
be discussed in a later section.

Theorem 1: Suppose that the value function and the value
function gradient are continuous. The control strategies for
the three agents are then given by

Optimal Control Strategy of E1:

cosθ
∗
1 =

λ1

ρ1
sinθ

∗
1 =− λα

d1ρ1

ρ1 =
√

λ 2
1 +(λα

d1
)2 (41)

Optimal Control Strategy of E2:

cosθ
∗
2 =

λ2

ρ2
sinθ

∗
2 =

λα

d2ρ2

ρ2 =
√

λ 2
2 +(λα

d2
)2 (42)

Optimal Control Strategy of P:

cosψ
∗ =− c1

ρp
sinψ

∗ =− c2

ρp

ρp =
√

c2
1 + c2

2 (43)

where

c1 =
λα

d2
sinα−λ1−λ2 cosα (44)

c2 =
λα

d1
−λ2 sinα− λα

d2
cosα (45)

The proof of this theorem is omitted to satisfy space con-
straints, but it can be found in the extended version of this
paper.

B. Numerical Analysis

Finding an analytic solution to the optimal trajectories is
not practical due to the nonlinear and coupled nature of the
state and adjoint equations. In order to numerically generate
the optimal trajectories, we first substitute the optimal control
strategies (41)-(43) into the the kinematic equations (7)-(11)
and the adjoint equations (25)-(30). The resulting system of
twelve ordinary differential equations describe the optimal
trajectories of the three agents and the corresponding costates
for this game. We can then numerically integrate backwards
in time from the terminal surface to generate the optimal
trajectories.

To find the initial conditions for integration we consider a
point on the terminal surface:

x f = ( d1 f , d2 f , α f , β f , x f , y f )
T (46)

where d1 f = dc and d2 f > dc. From (34)-(38), we find the
terminal adjoint vector:

λ f = ( ν8(d2−dc),0, 0, 0, 0, 0 )T (47)

After substituting the optimal control strategies into the
Hamiltonian and evaluating at the terminal state, we may
solve directly for λ1 f :

|λ1 f |=
CE (x f )+ct

vp−1 (48)

Knowing that E1 attempts to delay capture by increasing ḋ1,
we use the positive value for λ1. It should be noted that on
the portion of the terminal surface that represents the capture
of E1, the terminal control for E2 is undefined at the moment
of capture. Conceptually this makes sense because E2 can do
nothing to further delay capture of E1, and any change it can
produce in CE will have no effect on the integral cost because
the game has ended. But in order to perform the numerical
integration, it is necessary to know the control for E2 to start
the numerical integration. For this purpose we can use the
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Fig. 2. Optimal Trajectories for d2 f = 1.5, α f = 2.2, and vp = 1.5
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Fig. 3. Optimal Trajectories for d2 f = 7, α f = .8, and vp = 2.5

control just before capture, which can be found by taking
the limit:

lim
t→t f

tanθ2 = lim
t→t f

λα

d2λ2
= lim

t→t f

λ̇α

ḋ2λ2+d2λ̇2
=

λ̇α (t f )

d2 f λ̇2(t f )
(49)

We can now use the given terminal state x f (46), terminal
values found for λ f (47), and the terminal control for E2 (49)
as initial conditions for our backwards in time numerical
integration. The state equations are then integrated over
the time period of interest or until the trajectory reaches a
dispersal surface.

C. Illustrative Cases

After the integration is performed, the resulting trajectories
in the reduced coordinate system can then be mapped to
trajectories in the global coordinate system using (2)-(4).
Several illustrative cases are displayed in Fig. 2 through
Fig. 5. In each of these figures, the solid line represents
the trajectory of the pursuer; the dashed line represents the
trajectory of E1; and the dotted line represents the trajectory
of E2. In all three cases, the game is terminated when E1
is captured. The terminal position of the three agents are
marked by an x. The markers along the curves represent
the agent locations in two second increments. In Fig. 2, E2
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rushes to meet near the point of capture in order to perform a
last ditch flanking maneuver and create a large accumulation
of cost just before capture. This results in a counter flanking
maneuver by the pursuer just before capture. An enlarged
view of the trajectories just before capture can be seen in
Fig. 4.

In Fig. 3, the pursuer utilizes its speed advantage and per-
forms a counter flanking maneuver against the two evaders in
order to minimize the evader generated cost. In this scenario,
E1 can increase the cost to the pursuer more by attempting
to remain close and flanking as opposed to a strategy of
maximizing the time of the game by fleeing. This is similar to
a fight or flight decision in nature. E1 knows that it presents
more of a cost to the pursuer by making a stand, and the
evaders hope that this cost may be more than the pursuer is
willing to accept and therefore aborts the attack. Although
the initial conditions of this scenario shown in Fig. 5 are
similar to Fig. 3, the pursuer does not possess the same speed
advantage. Therefore, it does not try to outflank the evaders
and instead takes a more direct approach towards E1. Also,
E1 can accumulate more cost by running away and dragging
the game out for a longer period of time. Again, this is a
fight or flight situation, but it is more advantageous for E1
to flee. Throughout the game, E2 continues to harass the



pursuer from behind and accumulate cost.

D. Singular Surfaces

The value function generated by the optimal control strate-
gies divides the state space into mutually disjoint regions.
Within these regions, the value function is well defined by
the optimality conditions. The manifolds that divide these
regions are called singular surfaces and are characterized by
at least one of the following three characteristics: the optimal
control strategies are not uniquely determined by optimality
conditions previously described, the value function is not
continuously differentiable, or the value function is discon-
tinuous [16]. Most singular surfaces are not identified by
backward integration of the optimal trajectories and require
further analysis in order to describe the system behavior on
or near these surfaces.

Within this game, symmetry in the kinematic equations
and cost function hint at the existence of particular singular
surfaces. We will begin our analysis of the singular surfaces
by looking at the α = 0 plane. On this plane, the three agents
are in a collinear configuration with both evaders on one side
of the pursuer. The pursuer can then direct its beam of focus
at both evaders simultaneously, thereby completely negating
the evader-generated cost. As a result, the pursuer would
like to keep the state near the α = 0 plane while the evaders
attempt to force the state away from this plane. For the case
where ct > 0, the α = 0 plane represents a dispersal surface.
A dispersal surface is a surface within state space in which
one or both of the players can select from multiple optimal
control strategies. Each of these strategies moves the state off
of the surface in different directions, but will result in the
same value for the game. In this paper, for any game that
begins with the initial state on the α = 0 plane, the evaders
make an initial choice to force the α-component of the state
away from zero in either the positive or negative direction.
Either direction results in the same value of the game because
of the symmetry of the state equations, cost function, and
the resulting adjoint equations. Although the pursuer could
attempt to hold the state near the α = 0 plane, the slight
reduction of evader-generated cost would be out weighed by
the increased time penalty. This dispersal surface appears as
a discontinuity of the gradient of the value function in the
alpha-direction.

The d1 = d2 plane is also singular surface. The portion of
this plane where α > π

2 is clearly a dispersal surface where
the pursuer chooses an evader to capture and forces the state
off of the plane in that direction. Under certain conditions,
the region of the d1 = d2 plane near the intersection with the
α = 0 plane has the potential for a singular focal surface. In
this paper, we only consider initial starting positions above
α = π

2 on the d1 = d2 plane.

IV. CONCLUSIONS

This paper has developed a novel single-pursuer, two-
evader pursuit evasion game with an integral cost functional.
In this game, the pursuer strives to minimize the total integral
cost over the course of the game. The two-evaders are

represented as a single player with two control variables
and attempt to maximize the pursuer’s cost. The generated
optimal trajectories show that the proposed cost function
generates cooperative defensive behaviors between the two
evaders. These behaviors are similar to defensive grouping
and predator mobbing found in nature and could be used in
groups of unmanned systems in order to make attack a less
appealing option for an opposing force.

Future work consists of assigning a cost threshold in which
the pursuer would elect not to attack. We could then define a
region in state space for which pursuit would be too costly.
We would also like generalize the system to work for an
arbitrary number of evaders. Although the evader generated
cost can easily be extended to account for more agents,
the new evaders would create many more singular surfaces
that would greatly increase the complexity of the game and
require further analysis.
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This paper discusses the collection, post-processing and subsequent evaluation of flight

data of butterflies, in various free flight scenarios. A vision tracking system is used to

obtain the flight data; and this in turn is used to determine estimates of the motion of

different body parts of the insect, including the abdomen and the wings. These estimates

are subsequently analyzed with a view to establishing the manner in which the insect adapts

the motion of its abdomen to work in tandem with the motion of its wings. Furthermore,

the manner in which this adaptation changes through different flight phases is studied.

I. INTRODUCTION

The aerospace engineering community is increasingly interested in the flight mechanics and dynamics of
small flapping air vehicles, Figure 1(a), and natural organisms in the low Reynolds number regime. The

Figure 1. (a) A 20 cm wingspan ornithopter with a flexible wing in the REEF small wind tunnel. (b) The rain forest
at the McGuire Center for Lepidoptera and Biodiversity, Gainesville, FL.

observation and study of flying animals offers a significant source of bio-inspiration in several aeronautical
disciplines including highly dynamic adaptive structures. While flight measurements of biological systems are
relatively abundant, a meaningful recording of the data and an efficient distillation of their results is a work-
in-progress endeavor. Comprehensive data on insects flying in their natural environments are extremely rare.
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This paper presents the experimental techniques used for collecting live flight data from Lepidoptera in their
natural environment and illustrates results on their significant capabilities to adapt their intricate wings-
abdomen-thorax system to a variety of flight conditions including some extremely aggressive non-steady
maneuvers.

The flight measurements were performed at the Butterfly Rainforest at the McGuire Center for Lepi-
doptera and Biodiversity, Figure 1(b), which is a 650 square meter screened vivarium at the Florida Museum
of Natural History in Gainesville, FL. This center houses over 460 species of subtropical and tropical plants
and trees to support up to 2, 000 free-flying butterflies of 120 different species. Natural fliers demonstrate
a diverse array of flight capabilities, many of which are poorly understood. NASA established a research
project to explore and develop flight technologies inspired by biological systems.1 Aerodynamic research on
flapping insect wings revealed mechanisms such as leading edge vortices (LEVs) and offered design criteria
for insect-based flying machines.2

There have been numerous research projects performed by the biology community on the flight and
structural behavior of insects. Significant research was performed presenting measurements of insects flight
data considering the specimen as a multi-body system including head and thorax. For example, in the
Calliphora vicina (Blowfly) it was shown that there exists a high level of correlation between the head and
thorax movements; these were measured using sensor coils and during the insect’s saccades angular rates of
a few thousands of degrees per second were observed.3 A relevant contribution of the abdomen posture on
flight control mechanisms was presented in the male of Schistocerca gregaria (Male desert locust) suggesting
that the sensory cue evoking the yaw response is a change in the direction of the relative wind, monitored
by the cephalic wind receptor hairs.4 The adaptability of the Lepidoptera to different flight requirements
was observed by a non-symmetric passive wing twisting during upstroke and downstroke in the Insecta
Papilionoidea5 and during the highly un-steady take-off phase in the Pieris melete.6 Using the evolution of
neotropical butterflies as a natural experiment, a correlation between body center of gravity position and
flight maneuverability was demonstrated focusing on the relative proportions of the thorax and abdomen
as well as the palatability characteristics of different species of butterflies.7 Flight data gathered during
previous work on Idea Leuconoe (Tree Nymph) showed an apparently significant abdomen activity in certain
flying phases with a significant correlation with the flapping wing and body dynamics.8

There has also been prior work done on locusts tethered in a wind tunnel with the objective of studying
their longitudinal flight dynamics.10–12 Force measurements are obtained in the wind tunnel, which are then
used to determine stability derivatives of the insect under different relative wind velocities and angles of
attack. The literature also comprises of a discussion on the use of CFD based modeling for the purpose of
studying insect aerodynamics and flight dynamics.13 This paper, on the other hand, relies on free flight data
- an advantage of this is the ability to study different maneuvering flight phases of the insect; this advantage
however is usually tempered by the fact that the accuracy of wind tunnel data is often better than that of
free flight data. This work is aimed at determining the mechanisms used by live butterflies at adapting their
intricate abdomen and elastic wings system to non-steady flight conditions. These approaches could lead to
the development of new flight mechanics strategies for micro and nano air vehicles.

II. The Experimental Set Up and Post Processing

The design of the data acquisition system (DAQ) was based on two key requirements: being non-obtrusive
and having the capability of field measurements, i.e. allowing measurements in the insects’ natural envi-
ronment. A vision-based estimation method is used to study the insect flight with insignificant interference
with the natural behavior of the insects. The visual system is composed of two high-speed digital cameras
synchronized as a stereo pair, as schematically illustrated in Figure 2(a). A stereo pair of cameras with
known parameters and relative pose allows estimation of 3D position of points in space. The measurements
were performed under natural sunlight conditions at 100−200 frames per second and resolutions of 800x600
pixels. Figure 2(b) shows the cameras and computer hardware at their experimental location.

A sequence of pictures of the desired event is captured from both cameras and converted to two videos,
one for each camera, using a combination of custom and commercial software. The videos are digitized using
a stereoscopy tracking software15 and accurate camera calibration data in order to perform 3D stereovision
estimation of selected points on the target. The tracking software employed uses a 11-point Direct Linear
Transformation (DLT) method for calibration.14 The validation of the data acquisition and post processing
methodology, including an estimation of the uncertainties was achieved by using a custom made target
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Figure 2. (a) The stereo triangulation technique used by the cameras. (b) The stereo cameras in the experimental
environment.

consisting of multiple spring-mass components mounted on a shaker. The target has three parts simulating
a body, a head and an antenna; and the shaker is controlled by a computer which can induce any desired
oscillatory motion to the body. The targets three-dimensional position in time was measured using a high
resolution dynamic visual image correlation (VIC) normally used in experimental mechanics.9 Comparisons
with the positions acquired by the tracking software selected for the measurements on butterflies provide
estimates of the experimental uncertainties. A sample frame from a video is illustrated in Figure 3, describing
an Idea Leuconoe (Tree Nymph) butterfly during an approach for landing on a leaf. In this case a total of
four points including the tips of the left and right wings, the tip of the abdomen and the abdomen root,
were tracked.

Figure 3. Tracking of body parts of a butterfly during natural flight. Note the tracked points on the wing tips and the
abdomen.

The raw data may contain substantial voids due to points on the target being occluded, usually by other
body parts or by foliage. Methods of statistical curve-fitting to fill in missing data are used and smooth time
histories of the 3D position estimation are obtained, as depicted in Figure 4.
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Scatterplot 3D

Figure 4. Three-dimensional estimates of wing tips of a butterfly during natural descending flight. The trajectories
are depicted after the smoothing process.

III. Results

Data obtained from the live measurements is the processed with several objectives in mind. The kinemat-
ics and dynamics of the butterflies’ flight are the focus of the flight mechanics segment of the overall project.
The shape-changing and relative elastic deformation of the various body parts, specifically the abdomen, the
wings, the head and the antennae are the focus of the structural and aeroelastic segment. A combination
of these two segments enables the investigation of possible correlations with the overall flight trajectory and
performance of the insect. Three samples of the numerous flight events recorded in several sessions will be
presented as examples of dynamic in-flight adaptation of the body-wings system.
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Figure 5. Several flapping cycles of abdomen tip and wings demonstrated during a fly-by sequence

Before we go into a more detailed study of the relative motion of the wings and abdomen in highly
maneuvering flight, we briefly present a figure from a slightly benign flight sequence which is of a relatively
long duration and that enables us to witness several flapping cycles. This is given in Figure 5, which shows
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the vertical axis position of the wing tips and the abdomen tip relative to the abdomen root.
This figure clearly shows that for all the flapping cycles on display, the abdomen tip motion is nearly 180

deg out of phase with the wing tip motion. Also shown in the figure, is the vertical axis displacement of the
abdomen root. In the particular flight sequence shown in Figure 5(a), the insect exhibited some periodicity
in its overall flight trajectory, and interestingly the number of cycles of the abdomen root motion is exactly
equal to the number of cycles of motion of each of the wing and the abdomen. Furthermore, Figure 5(a)
demonstrates what appears to be a clear phase lag of the translational motion of the abdomen root (which
represents the overall motion of the insect), relative to the wing and the abdomen tip motion; and this seems
to indicate that the insect is using its abdomen as an active control device, at least during this particular
flight phase.

The flight discussed above does not comprise of any significantly rapid maneuvers. We now turn our
attention to a flight (of an insect from the same species) that does comprise a sequence of rapid maneuvers.
More specifically, we now look at a flight that comprises of an acceleration phase, followed by a deceleration,
followed by a turn and finally a phase of pure descent. During the 180 degree saccade on a horizontal
plane with near zero turning radius the butterfly’s abdomen adapts to the wing motion and significantly
contributes to the dynamics of the turn. This 180 degree turn in yaw was performed in Flight 072708 0101
by an Idea leuconoe (Tree Nymph). A few snapshots of the flight are given in Figure 6.

Figure 6. Sequence during the Tree Nymph saccade. In (1) the butterfly starts a rapid deceleration with an aggressive
yaw (2) and roll (3) motions. In (4) it starts a steady descent.

The sequence of phases during this flight are as follows:
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a) The insect initially accelerates in the forward direction, while reducing the y-axis component of its velocity
to near zero. This is clearly brought out in Figure 7 which shows the insect velocity (which is represented by
the velocity of the abdomen root). b) It then decelerates as it readies itself for a turn. In this phase, first the
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Figure 7. Overall velocity of the insect

forward velocity of abdomen root reduces till it comes down to zero. The abdomen tip however continues to
move forward with some velocity. After about 0.1 sec, the forward velocity of abdomen tip too reduces to
zero.
c) The head-thorax turns upwards, as the abdomen tip swings around, while the abdomen root performs a
yawing turn. This is evident in Figure 8, which shows the trajectory of the abdomen root and the abdomen
tip on a horizontal plane. In order to show the relative position of the abdomen root and tip during this
trajectory, a line (dotted red) is also shown. One can thus see the motion of the abdomen root is initially
curved as it takes a turn and then (its projection on the horizontal plane) moves along a straight line. The
abdomen tip however continues to swing around even after the abdomen root has stopped its turn. The
abdomen activity also seems to indicate that there is an adaptation of the insect mass-distribution for this
small radius maneuver.
d) The wings typically flap in phase in symmetric flight although in this case, around this time, the wing
tips are at 180 deg out of phase with each other, while the insect performs a roll. The fact that they become
180 deg out of phase is evidenced in Figure 9.
e) The insect loses altitude as the wing tips take some finite time to get back to flapping in phase with each
other. The wing tips take about 0.1 sec to transition from 180 deg out of phase to back in phase. During
that time interval, the insect loses close to 100 mm in altitude. All of these are evidenced in Figure 9.
f) As the two wings get back together in phase with one another, at the same time the abdomen tip gets
itself back to 180 deg out of phase with the wings, which would represent the normal symmetric flying
condition. This is also evidenced in Figure 9. At the beginning of the saccade the insect gives priority to the
aerodynamic effects of the wings as well as positioning the abdomen vertically to maximize the drag. At the
apex of the saccade the butterfly is using the abdomen inertia to execute a snap-roll and later to stabilize
the flapping to go in a descending-hovering mode. The mass and inertia of the relatively heavy abdomen
is dynamically adapted for the various phases of saccade. A relevant contribution to the gyration inertia
management is also attributed to the wings’ moving and closing at strategic times.

Figure 10 demonstrates the left wing tip and abdomen tip trajectories, shown on a vertical plane, relative
to the moving abdomen root. The abdomen root is thus always at the origin of this figure. It is clearly
seen that as the wing tip moves back and forth, as well as up and down, the abdomen tip too shows a
back and forth and up and down motion. The starting points on each of the two curves are marked out
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Figure 8. Abdomen root and tip trajectory projected on a horizontal plane during a 180 degree turn.

in small green circles. During the initial acceleration phase, the wing tip executes a stroke that is close to
horizontal - this is in agreement with general intuition that horizontal wing strokes would be used for thrust
generation. The abdomen tip stroke during this phase has both horizontal as well as vertical components.
During the deceleration phase, the insect reduces its wing flapping speed and brings its wing tips high above
the abdomen root. There is an accompanying twisting motion of the wings around this time (not visible on
Figure 10), as the insect uses its wings as an airbrake of sorts to slow itself down. Simultaneously, it is seen
that the insect brings its entire abdomen almost directly under the abdomen root and the horizontal stroke
of the abdomen is very short during this phase. This is probably because the insect wants to sustain the
abdomen in as close to a vertical position as possible since doing so can ensure that the abdomen contributes
to the drag force. It then executes the turn, after which there is a phase of pure descent during which both
the wing as well as the abdomen execute an almost vertical stroke.

Figure 10 thus demonstrates that the insect possesses significant abdomen motion to accompany the wing
motion. In certain flight phases, such as the deceleration for instance, the role of the abdomen seems to
complement that of the wing, as the insect uses both of them in a manner to increase the drag it experiences.
In certain other flight phases, such as the turn, the abdomen seems to play a stronger role than the wings in
generating the flight trajectory. For the data shown in Figure 10, we compute the flapping velocities of the
wing tip and the abdomen tip. The components of these flapping velocities along the three inertial axes are
shown in Figure 11(a). It is seen that during the initial acceleration phase, there is significant component
of the flapping velocity along the X-axis, which is the direction of flight of the insect; and the same then
reduces during the deceleration phase. The flapping velocity component of the abdomen, along the X-axis
does not seem to be affected by the fact that the insect is accelerating or decelerating; but it does show the
same periodicity as the wing and consistently remains in a phase opposite to that of the wing. During the
turn, the X and Y axes flapping velocity components of the abdomen become almost comparable to that of
the wing, thus indicating the strong role that the abdomen plays during a turn. Also, along the Y axes, the
flapping velocity of the abdomen initially increases in phase with the wing, but this then gets disrupted till
the occurrence of the turn, during which period, the abdomen tip velocity becomes nearly opposite in phase
to that of the wing. Figure 11(b) then shows the X axis components of the flapping velocities of the wingtip
and abdomen tip on a phase plane. The different flight phases are identified by different colors on this plot.

We can then take the scalar sums of the individual velocity components shown in Figure 11(a) to plot the
flapping speeds of the wings and the abdomen. This is shown in Figure 12(a). In this figure, we see that the
wing flapping speed is significantly higher than that of the abdomen in all phases of flight, except during the
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Figure 9. Vertical axis trajectories of different body parts of the insect.

turn. During the middle of the turn, the amplitude of the peak of the flapping speed is almost exactly equal
to that of the wing. Yet by adjusting the relative phases of the two flapping speeds, the insect ensures that
the ratio of abdomen tip flapping speed to the wing tip flapping speed is in excess of unity, during the turn.
Note that during the initial acceleration and deceleration phases, the abdomen flapping speed varies almost
in phase with the wing flapping speed; and it is just at the commencement of, and during the turn that this
relative phase pattern gets disrupted. During the second half of the turn, there is an almost constant phase
lag of the abdomen tip flapping speed in relation to the wing tip flapping speed. Figure 12(b) then shows
the ratio of the abdomen tip flapping speed to the wingtip flapping speed during the different flight phases.
It is clearly seen that this ratio becomes significantly high during the turn thus demonstrating the major
role that the abdomen appears to play during the turning flight phase, at least as far as this particular ratio
metric is concerned.

From the data of Figure 7 and assuming a nominal mass of 0.35 grams, we get the inertial forces acting
on the insect. These are given in Figure 13, from which we see that the magnitudes of these forces are of
the order of 0.01 Newtons. Figure 14(a) shows a comparison of the Reynolds Number of the wing tip and
the abdomen tip through the different flight phases. For this computation, the characteristic length of the
abdomen was taken as the abdomen length itself while for the wing, the characteristic length was taken as
the mean aerodynamic chord of the wing. Typical values of these quantities for the species being considered
are 0.02912 meters and 0.03844 meters, respectively. The diameter of the abdomen is typically 0.00485
meters. The Reynolds Number of the wing tip ranges from 2000 to about 15000, while that of the abdomen
tip ranges from 2000 to about 8000. The Reynolds Number of the abdomen is generally lower than that
of the wing, except during the acceleration and the turn phases. During these two phases, the Reynolds
number of the abdomen tip is comparable to that of the wing tip. Figure 14(b) shows the advance ratio of
the wing.

There is significant wing cambering activity as the butterfly prepares itself for the deceleration. This
is demonstrated in Figure 15. To generate the plots in this figure, three representative points on the wing
chord were tracked - one on the leading edge, a second on the trailing edge and a third in between the leading
and trailing edges. In the frames when these three points are found to be nearly collinear, it is construed
that there is negligible wing cambering, while at other times it is construed that there is significant wing
camber. The wing cambering is demonstrated through a succession of frames, with the abdomen root being
positioned at the origin of each of these Figures 15(a-d). In these figures, the color sequence is as follows:
the first frame in each figure is represented in blue, followed by green, red, cyan and magneta. Also plotted
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for the purposes of comparison, is the wing tip flapping velocity vector. From Figure 15(a), it is seen that in
frame 66, the wing has negligible camber and then progressively gets cambered as it executes a downstroke.
Figure 15(b) shows the continued presence of the camber during the wing upstroke motion. Some wing
camber continues to be present further along the upstroke; and after the wing crosses the abdomen root,
this camber then begins to reduce (as seen in Figure 15(c-d)).

The next relevant example of in-flight structural adaptation is presented with a glide flight with very
mild flapping activity (flight number 0330080205). Interestingly enough the event displays an in-flight wings
twisting and change of dihedral (on the single wing) with probably no inertia loads from flapping motion
on the wing. This fact appears quite remarkable due to the absence of any muscles in the butterfly’s wing.
Figure 17 illustrates a three-dimensional plot of the trajectory of two chord-wise sections on each wing (right
wing blue, left wing green). The absence of significant flapping and the presence of twisting activity are
both evident. Again the abdomen (green line) is probably used to dynamically adapt the center-of-gravity
position to the new flight requirements (the orientation changes at low rates).
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Figure 13. Inertial force components on the insect

IV. Conclusions

This paper discusses the collection and analysis of free flight data of butterflies in their natural environ-
ment. A particular flight with several rapid changes in flight phase is evaluated, with the objective being to
determine the manner in which the insect adapts the motion of its abdomen to that of its wings; and also
to determine how the manner of this adaptation changes from one flight phase to the next. Instances of the
insect adapting its wing shape in an aeroelastic manner are also demonstrated. Future work will comprise
the use of sophisticated mathematical tools to perform a deeper analysis of this adaptive behavior.
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Figure 15. Demonstration of wing cambering activity as the butterfly prepares for deceleration.
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Figure 17. Sequence during a steady descending glide with little flapping activity. The segments represent the right
wing chord at mid-wing (blue), the left wing chord (red) and abdomen (green).
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Sensitivities & Functional Gains for a Flexible Aircraft-Inspired Model

Animesh Chakravarthy, Katie A. Evans, and Johnny Evers

Abstract— Aeroelastic wing micro-autonomous aerial systems
(MAAS) concepts are being explored for military and civilian
applications. However, on the whole, the issues of control
of MAAS are largely unexplored. Controllers designed using
methods applicable to larger aircraft are unlikely to realize the
agile flight potential of flexible wing MAAS airframes. In this
paper, the authors use two Euler-Bernoulli beams connected
to a rigid mass to model an aeroelastic wing MAAS. They
employ Continuous Sensitivity Equation Methods to examine
the sensitivity of the controlled state with respect to variation
of the H∞ control parameter, with the primary goal being to
gain insight into the flexible dynamics of the system in order to
exploit the flexibility for control purposes. Further, the authors
examine functional gains in order to determine optimal sensor
placement while taking advantage of the flexibility of the MAAS
model.

I. INTRODUCTION

Considerable work is currently underway to investigate
the aerodynamics, structural dynamics, flight mechanics, and
control associated with bio-inspired flight (see for example
[1], [2], [3], [4], [5]). Consequently, aeroelastic wing micro-
autonomous aerial systems (MAAS) concepts are being
explored for military and civilian applications. Work from
other projects (see for example [6], [7], [8], [9]) is laying
the foundation required to eventually construct high fidelity
dynamics models of MAAS, which do not currently exist,
though key features of such models are emerging. However,
on the whole the issues of control of agile aeroelastic
wing MAAS are largely unexplored. All micro-scale vehicles
developed to date exhibit only limited autonomy, generally
way-point trajectory following, with limited agility.

In this paper, the authors use two Euler-Bernoulli beams
connected to a rigid mass in an initial effort to model an
aeroelastic wing MAAS. Each beam represents a flexible
wing, while the rigid mass represents the fuselage. This
“beam-mass-beam” model will be referred to as the BMB
model system in this paper. The authors employ Continuous
Sensitivity Equation Methods to examine the sensitivity of
the controlled state with respect to variation of theH∞ control
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parameter, with the goal being to gain insight into the flexible
dynamics of the system in order to exploit the flexibility
for control design purposes. A secondary goal of this aspect
of the research is to explore the possibility of determining
an efficient assignment of theH∞ control parameter that is
mathematically justified and does not require an iterative
procedure for determination. Chen identified the problem of
finding an optimal value for the control design parameter
as an unsolved problem in systems and control theory [10].
Further, the authors examine both controller and observer
functional gains in order to obtain insight into the problem
of optimal actuator and sensor placement for MAAS systems.
The approaches explored numerically in this paper seek to
take advantage of the flexibility of aeroelastic wings and
exploit the same to achieve agility as opposed to viewing
this characteristic as a hindrance for control design.

The outline of the paper is as follows. TheH∞ controller is
summarized in Section II. Section III provides a description
of the equations governing the partial differential equation
(PDE) model, along with the variational forms of the PDE
equations and state sensitivity. Numerical results are pre-
sented in Section IV. Conclusions and directions for future
work are given in Section V.

II. H∞ CONTROL DESIGN

In this section, the authors present a short overview of
the H∞ compensator design in state space form [11], [12].
Assume the existence of a linear PDE system of the form

ẋ(t) = A x(t)+Bu(t), x(0) = x0, (1)

wherex(t) = x(t, ·)∈X is the state of the linear system andX
is a Hilbert space. Here,A is the system operator defined on
D(A ) ⊆ X that, by assumption, generates an exponentially
stableC0 semigroup,B is the control operator, andu(t) is
the control input, defined on Hilbert spaceU , which is taken
to be IRm in this work. It is assumed that knowledge of
only part of the system can be obtained through the state
measurementy on Hilbert spaceY , which is taken to be IRp

in this work, wherey(t) = C x(t). Assume an estimate of the
state is used in the control law. To provide this estimate, a
compensator is used that has the form

ẋc(t) = Acxc(t)+Fy(t), xc(0) = xc0 (2)

and the feedback control law is written

u(t) =−K xc(t) (3)

wherexc(t) = xc(t, ·) ∈ X is the state estimate. Designing a
controller of this type requires determiningAc,F , andK .



By solving the Riccati equations

A
∗Π+ΠA −Π(BR−1

B
∗−θ 2

BB
∗)Π+C

∗
C = 0, (4)

whereR : U →U is a weighting operator for the control of
the formR = cI, with c a scalar andI the identity operator,
and

A P+PA
∗−P(C ∗

C −θ 2
C

∗
C )P+BB

∗ = 0, (5)

one can obtain the operatorsK , F , andAc via

K = R−1
B

∗Π,

F = (I −θ 2PΠ)−1PC
∗,

Ac = A −BK −FC +θ 2
BB

∗Π. (6)

The resulting feedback control is applied to the original linear
system; the closed loop linear system is then defined by

d
dt

[

x(t)
xc(t)

]

=

[

A −BK

FC Ac

]

[

x(t)
xc(t)

]

. (7)

For sufficiently smallθ , there are guaranteed minimal so-
lutions Π and P to (4) and (5), respectively, such that
(I − θ 2PΠ) is positive definite and the linear closed loop
system (7) is stable. Note thatθ = 0 yields the classical
Linear Quadratic Gaussian (LQG) compensator design. Since
there exist no prescribed formulas forθ , there is an inherent
computational expense for this control design in choosing
the parameter value. As a secondary goal, the authors seek
to use sensitivity analysis to gain a better understanding
of the H∞ controller. The goal is to develop a methodol-
ogy for choosingθ to satisfy performance and robustness
criteria, while justifying that choice based on the analysis.
To this end, sensitivity analysis is applied toH∞ controlled
distributed parameter systems to examine the sensitivity of
the controlled state toθ .

For certain PDEs, the control law in (3) can be written in
integral form. That is,

u(t) =−K xc(t) =−〈ki(s),xc(t)〉X , (8)

for spatial variables and whereki ∈ X for i = 1,2, ...,m
(see for example [13]), and the kernels of the integrals,
ki(s), are called control functional gains. Control functional
gains can be used to determine optimal sensor placement
(see for example [14], [15], [16], [17]) because they provide
information about the contribution of the state estimate to
the overall controller. For example, an area where a control
functional gain is large would indicate that area provides a
state estimate value that contributes more significantly to the
controller. Further, there would be potential benefit in placing
sensors in that area.

Additionally, the observer gain operatorF : IRp → X is
continuous and has range inD(A ) ⊆ X . Then, for a state
estimate of the formxc(t) = [wc(t, ·) ∂

∂ t wc(t, ·)], F has the
representation

Fy =

[

g1(s) · · · gp(s)
h1(s) · · · hp(s)

]







y1
...

yp






∈ X , (9)

where g1(s), . . . ,gp(s),h1(s), . . . ,hp(s) are called observer
functional gains. To more completely analyze the problem
of sensor placement, observer functional gains should be
examined alongside control functional gains. For example,
an area where an observer functional gain is large would
indicate that area provides a measurement value of the state
that contributes more significantly to the overall controller
design. Thus, using similar logic applied in the case of
control functional gains, there would be potential benefit in
placing sensors in that area.

As documented in [14], this simple approach to sen-
sor placement does not take into account issues such as
performance and robustness. However, given the complex
nature and relative lack of understanding of aeroelastic wing
MAAS, it is reasonable to examine the functional gains in
this problem as initial work toward the direction of designing
sensors for these aircraft.

III. AN AIRCRAFT-INSPIRED MODEL

In this work two Euler-Bernoulli beams connected on
either side of a rigid mass are used to model an aeroelastic
wing MAAS, hereafter referred to as the BMB system. The
fuselage of the MAAS is assumed to be rigid. A schematic
of the BMB system is given in Figure 1. Note that the BMB
system is meant to represent primarily the heave dynamics
of the MAAS. The MAAS is initially assumed to be flying
with wings straight and level and in equilibrium with the lift
balancing the weight. At timet = 0, there is assumed to be
a perturbation in the wings’ shape (caused by a sudden gust,
for example). This perturbed wing shape causes a change in
the local angle of attack distribution over each wing and this
in turn leads to a perturbation in the lift distribution denoted
by ∆Lift (t,s). Each beam is modeled with both viscous and
Kelvin-Voigt damping, and it is assumed that the material
and inertial properties of both beams are homogenous and
identical. Denoting the displacement of the left beam from its
initial equilibrium position at timet and positions by wL(t,s)
and the corresponding displacement of the right beam at time
t and positions by wR(t,s), the model of the BMB system
is described as follows:

ρa
∂ 2

∂ t2 wL(t,s)+EI
∂ 4

∂ s4 wL(t,s)+ γ1
∂
∂ t

wL(t,s)

+γ2I
∂ 5

∂ t∂ s4 wL(t,s) =
−∆Lift (t,s)

ℓ/2
+ bL(s)uL(t),

(10)
for 0≤ s ≤ ℓ/2, t > 0, and

ρa
∂ 2

∂ t2 wR(t,s)+EI
∂ 4

∂ s4 wR(t,s)+ γ1
∂
∂ t

wR(t,s)

+γ2I
∂ 5

∂ t∂ s4 wR(t,s) =
−∆Lift (t,s)

ℓ/2
+ bR(s)uR(t),

(11)



for ℓ/2< s ≤ ℓ, t > 0, subject to boundary conditions

EI
∂ 2

∂ s2 wL(t,0)+ γ2I
∂ 3

∂ t∂ s2 wL(t,0) = 0,

EI
∂ 3

∂ s3 wL(t,0)+ γ2I
∂ 4

∂ t∂ s3 wL(t,0) = 0,

EI
∂ 2

∂ s2 wR(t, ℓ)+ γ2I
∂ 3

∂ t∂ s2 wR(t, ℓ) = 0,

EI
∂ 3

∂ s3 wR(t, ℓ)+ γ2I
∂ 4

∂ t∂ s3 wR(t, ℓ) = 0,

EI
∂ 3

∂ s3 wL(t, ℓ/2)+ γ2I
∂ 4

∂ t∂ s3 wL(t, ℓ/2)

−EI
∂ 3

∂ s3 wR(t, ℓ/2)− γ2I
∂ 4

∂ t∂ s3 wR(t, ℓ/2)

= m
∂ 2

∂ t2 wL(t, ℓ/2),

wL(t, ℓ/2) = wR(t, ℓ/2),

∂
∂ s

wL(t, ℓ/2) =
∂
∂ s

wR(t, ℓ/2),

EI
∂ 2

∂ s2 wL(t, ℓ/2)+ γ2I
∂ 3

∂ t∂ s2 wL(t, ℓ/2)

−EI
∂ 2

∂ s2 wR(t, ℓ/2)− γ2I
∂ 3

∂ t∂ s2 wR(t, ℓ/2)

= Iz
∂ 3

∂ t2∂ s
wR(t, ℓ/2),

(12)

whereρ is the density of the beam material,a is the cross-
sectional area of the beam,E is Young’s modulus,I is the
area moment of inertia of the beam,Iz is the mass moment
of inertia of the rigid mass,γ1 is the coefficient of viscous
damping,γ2 is the coefficient of Kelvin-Voigt damping,m
is the mass of the rigid connection between the beams,
bL(s) is the control input function for the left beam,uL(t)
is the controller for the left beam,bR(s) is the control input
function for the right beam,uR(t) is the controller for the
right beam, and∆Lift (t,s) is the function representing the
perturbed lift force on each of the beams. In this work,Iz is
taken to be zero, so the simulated BMB system is actually
a free-free beam with a point load in the center.

Fig. 1. MAAS model system.

Sensed information is used to design a feedback controller
that regulates the MAAS model system to the exponentially
stable zero equilibrium. It is assumed that the controllers act
over the entire beam structures with control input functions
of the form

b(s) = bL(s) = bR(s) = 0.5, (13)

for 0≤ s ≤ ℓ, and available observations taking the form

y(t) = 0.25w(t,s), (14)

for 0≤ s ≤ ℓ.

A. Variational Form and Discretization of BMB System

Now consider the variational form of the BMB system in
order to develop a Galerkin finite element approximation of
the problem. For brevity, only the weak formulation of the
left beam will be presented; the formulation for the right
beam follows similarly. Employing the shorthand notation
ẇ(t,s) = ∂

∂ t w(t,s) andw′(t,s) = ∂
∂ s w(t,s) for this discussion,

the variational problem is that one seeks awL(s) ∈ V =
{ϕ(·) ∈ E} ⊂ E = H2(0, ℓ/2) such that for allϕ ∈V

∫ ℓ/2

0
ρaẅL(t,s)ϕ(s) ds+

∫ ℓ/2

0
EIw′′′′

L (t,s)ϕ(s) ds+

∫ ℓ/2

0
γ1ẇL(t,s)ϕ(s) ds+

∫ ℓ/2

0
γ2Iẇ′′′′

L (t,s)ϕ(s) ds

=
∫ ℓ/2

0

−∆Lift (t,s)
ℓ/2

ϕ(s) ds+
∫ ℓ/2

0
bL(s)ϕ(s)uL(t) ds.

(15)

Now choose a basis{bi}N
i=1 for the approximating space

V N ⊆ V , whereN corresponds to the number of gridpoints
used in the finite element approximation. In particular, since
V N ⊆ V ⊂ E = H2(0, ℓ/2), the state can be approximated
by a linear combination of cubic splines. Then the state is
approximated as

wL(t,s)≈ wN
L (t,s) =

N

∑
i=1

ci(t)bi(s). (16)

Using the state approximation (16) in (15) yields the matrix
equation

M0c̈(t)+D0ċ(t)+K0c(t) = F0(c(t))+B0uL(t) (17)

wherec(t) = [c1(t), . . . ,cN(t)]
T , M0 is the mass matrix,D0

is the damping matrix,K0 is the stiffness matrix,F0(c(t))
contains the lift function, andB0 is the input matrix, all
defined by the following, fori, j = 1, . . . ,N:

[M0]i, j =
∫ ℓ/2

0
ρabi(s)b j(s) ds+mbi(ℓ/2)b j(ℓ/2)

−Ib′i(ℓ/2)b′j(ℓ/2),

[D0]i, j =

∫ ℓ/2

0
γ1bi(s)b j(s) ds

+
∫ ℓ/2

0
γ2Ib′′i (s)b

′′
j (s) ds,

[K0]i, j =

∫ ℓ/2

0
EIb′′i (s)b

′′
j (s) ds,

[F0(c(t))] j =

∫ ℓ/2

0

−∆Lift (t,s)
ℓ/2

b j(s) ds,

[B0] j =

∫ ℓ/2

0
b(s)b j(s) ds.

(18)



Convert (17) into a first order system by definingx1(t) = c(t)
andx2(t) = ẋ1(t) = ċ(t), thereby yielding

[

ẋ1(t)
ẋ2(t)

]

=

[

0 I
−M−1

0 K0 −M−1
0 D0

][

x1(t)
x2(t)

]

+

[

0
M−1

0 B0

]

uL(t)+

[

0
M−1

0 F0(w(t))

]

,

(19)

wherex = [x1(t),x2(t)]
T =

[

x1(t),
d
dt x1(t)

]T
. Note that (19)

is a finite-dimensional approximation of the system in (1).

B. Variational Form and Discretization of Sensitivity Equa-
tion for BMB System

This framework now provides the basis for implementing
control techniques discussed in Section II. Beyond control
design, the authors are interested in examining the effects
of the H∞ control parameter,θ , on the displacement of the
beams and the controller itself. The dependence of these
quantities onθ is denoted explicitly with the following nota-
tion: wL(t,s) = wL(t,s;θ ) anduL(t) = uL(t;θ ), respectively.
Continuous Sensitivity Equation Methods are employed for
examining the sensitivities of these quantities to changes
in the value of θ used in theH∞ control design. Make
the following definitions for the sensitivities:swL(t,s;θ ) =
∂

∂θ wL(t,s;θ ) for the sensitivity of beam displacement with
respect toθ at time t and spatial locations and suL(t;θ ) =
∂

∂θ uL(t;θ ) for the sensitivity of the controller with respect
to θ at time t.

Now derive the variational form of the sensitivity equation
by differentiating (10) with respect toθ . One seeks awL(s)∈
V = {ϕ(·) ∈ E} ⊂ E = H2(0, ℓ/2) such that for allϕ ∈V

∫ ℓ/2

0
ρas̈wL(t,s)ϕ(s) ds+

∫ ℓ/2

0
EIs′′′′wL

(t,s)ϕ(s) ds+

∫ ℓ/2

0
γ1ṡwL(t,s)ϕ(s) ds+

∫ ℓ/2

0
γ2Iṡ′′′′wL

(t,s)ϕ(s) ds

=

∫ ℓ/2

0

d
dw

(−∆Lift (t,s)
ℓ/2

)

swL(t,s)ϕ(s) ds+

∫ ℓ/2

0
bL(s)ϕ(s)suL(t) ds.

(20)

Choose the same basis{bi}N
i=1 for the approximating space

V N ⊆ V as was used in the state approximation. Then the
state sensitivity is approximated as

swL(t,s;θ )≈ sN
wL
(t,s;θ ) =

N

∑
i=1

sci(t)bi(s), (21)

and a finite dimensional approximation of (20) can be
rewritten as a matrix equation

M0s̈c(t)+D0ṡc(t)+K0sc(t) = F1(c(t),sc(t))+B0su(t;θ ), (22)

where sc(t) = [sc1(t), . . . ,scN(t)]
T , M0, D0, K0, and B0 are

defined in (18), andF1(c(t),sc(t)) is based upon the lift
function. Convert (22) into a first order system by defining

sx1(t) = sc(t) and sx2(t) = ṡx1(t) = ṡc(t), thereby yielding
[

ṡx1(t)
ṡx2(t)

]

=

[

0 I
−M−1

0 K0 −M−1
0 D0

][

sx1(t)
sx2(t)

]

+

[

0
M−1

0 B0

]

suL(t)+

[

0
M−1

0 F1(wL(t),swL(t))

]

,

(23)

where sx = [sx1(t),sx2(t)]
T =

[

sx1(t),
d
dt sx1(t)

]T
. Combining

(19) and (23) yields the coupled system








ẋ1(t)
ẋ2(t)
ṡx1(t)
ṡx2(t)
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0 I 0 0
H1 H2 0 0
0 0 0 I
0 0 H1 H2

















x1(t)
x2(t)
sx1(t)
sx2(t)









+









0
H3 u(t)

0
H3 su(t)









+









0
H4

0
H5









,

(24)

whereI is the identity operator and

H1 =−M−1
0 K0, H2 =−M−1

0 D0, H3 = M−1
0 B0

H4 = M−1
0 F0(w(t)), H5 = M−1

0 F1(w(t),sw(t)).
(25)

Now, (24) is a finite-dimensional approximation to a system
similar to the form of (1), where the additional terms appear
due to the coupled sensitivity equation. One can replace the
control uL(t) in (24) by the full state feedback control law

uL(t;θ ) =−K x(t;θ ) =−K [x1(t) x2(t)]
T . (26)

Furthermore, one can differentiate (26) with respect toθ to
computesuL(t;θ ) as follows

suL(t;θ ) =
d

dθ
uL(t;θ )

= −R−1
B

∗Π
dx(t;θ )

dθ
−R−1

B
∗ dΠ

dθ
x(t;θ )

= −K swL(t;θ )−R−1
B

∗ dΠ
dθ

wL(t;θ ),

(27)

where the sensitivity ofΠ with respect toθ , dΠ
dθ , is computed

by differentiating (4) with respect toθ and solving a resulting
Lyapunov equation [18], [19].

IV. NUMERICAL RESULTS

To obtain a solution to the system in (24), initial conditions
are chosen of the form:x1(0) = sin

(πs
ℓ

)

, x2(0) = π
ℓ cos

(πs
ℓ

)

,
sx1(0) = 0.75∗ x1(0), and sx2(0) = 0.75∗ x2(0). That is, to
generate a nonzero state sensitivity, the authors choose the
initial conditions for the sensitivity equation to be 75% of
the initial conditions for the state equation. A finite element
approximation using Hermite interpolating cubic splines of
order N = 20 for the spatial discretization ofeach beam is
employed to simulate (24), and the parameter values for the
BMB system are as follows:ℓ= 10 m, ρ = 5.24 kg/m3, ŵ
(width) = 1/

√
48 m,h (height)= 1/

√
48 m,a = ŵh = 1/48

m2, E = 1.44× 109 N/m2, I = 1/1327104 m2, m = 5 kg,
γ1 = 0.025 kg/(m s), γ2 = 1×104 kg/(m5 sec). Originally,
standard 4 degree of freedom beam elements were selected



for the finite element approximation, where the degrees
of freedom correspond to displacements and slopes at the
endpoints of each beam element (see for example [20]).
However, due to numerical instabilities in solving the finite
dimensional approximations to (4) and (5) with the 4 degree
of freedom scheme, an approximation using 2 degrees of
freedom, displacements at the end of each beam element,
was developed. Numerical results from this approximation
scheme are presented in this paper.

For this discretization and set of parameter values, it was
found that the largest possibleH∞ controller parameterθ
that will guarantee(I − θ 2PΠ) being positive definite is
0.38. Therefore, allH∞ controllers implemented in this paper
use θ = 0.38. Still, the reader is reminded of the interest
in examining the sensitivity of the state with respect toθ
variation. In this work, the lift function is neglected, but it is
included in the written statement of the model and relevant
weak formulations since, ultimately, it is the intent that the
BMB system will closely model a MAAS system.

Approximate state and state sensitivities toθ are computed
for several values of the parameter, namelyθ = 0.00 (LQG
compensator),θ = 0.10, θ = 0.20, andθ = 0.38. For refer-
ence, the uncontrolled state plot is given in Figure 2. It is the
intent to design a feedback controller that will stabilize the
unstable uncontrolled system. The primary question of inter-

Fig. 2. Uncontrolled Position State

est in this paper is how to take advantage of the aeroelastic
wing feature of a MAAS to aid in control design efforts. A
secondary goal is to examine how sensitive the controlled
beam displacements are to variation in theH∞ control
parameter,θ . Figure 3 contains plots of the state sensitivities
to the θ parameter. As can be seen from these simulations,
the state sensitivities for the variousθ values depicted are
virtually indistinguishable. This observation suggests that for
the BMB system with the chosen parameters, the actualθ
value used in control design may not be critical in regard to
controlled state performance.

Additionally, the authors examinesu(t;θ ), the sensitivity
of the controller with respect toθ , and these plots are
found in Figure 4. The results demonstrate that the controller
becomes more sensitive toθ as this parameter is increased.
Since the value ofθ is closely connected to the robustness of
the controller, this observation suggests that the more robust
the controller, the more sensitive it is toθ .

As a means to gain insight into the problem of sensor
placement, the authors examine the control and observer

Fig. 3. State Sensitivities:θ = 0.00 (top left),θ = 0.10 (top right),θ = 0.20
(bottom left),θ = 0.38 (bottom right)
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Fig. 4. Controller Sensitivities:θ = 0.00 (top left), θ = 0.10 (top right),
θ = 0.20 (bottom left),θ = 0.38 (bottom right)

functional gains, contained in Figures 5 and 6, respectively.
An area where a functional gain is large indicates that one
should consider placing a sensor in that region of the spatial
domain since it appears to contribute significantly to the
control design. Due to the small scale of the control bending
gains in Figure 5, there is no useful information to ascertain
from this plot. The control velocity gains suggest that sensors
be placed at the free ends of the beams. The observer gains
in Figure 6 are nearly constant so that there is no useful
information to ascertain from this plot. It should be noted that
there may be a problem with convergence of the functional
gains, as can be seen from the plots. Normally, one examines
the functional gains for various discretizations with increas-
ing N to verify that gain convergence has been achieved.
However, forN = 5 andN = 10 for each beam, MATLABr

reported that the Grammian matrixW = [K0 0;0 M0] was
nearly singular so that computation ofW−1, as required
for gain computation (see [13]), may not be accurate. For
this reason, and the fact that finer discretizations thanN =
40 on each beam are computationally intractable due to



the cubic spline basis required for Euler-Bernoulli beam
approximations, only gain computations forN = 20 and
N = 40 for each beam are shown.
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Fig. 5. Control Functional Gains forθ = 0.38 with N = 20 (red) andN = 40
(black) for each beam: bending gains (left) and velocity gains (right)

0 2 4 6 8 10
5

6

7

8

9

10

11

12
x 10

−3 Bending Observer Gains

s

g(
s)

0 2 4 6 8 10
0.008

0.01

0.012

0.014

0.016

0.018

0.02
Velocity Observer Gains

s

g(
s)

Fig. 6. Observer Functional Gains forθ = 0.38 with N = 20 (red) and
N = 40 (black) for each beam: bending gains (left) and velocity gains (right)

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In the paper, the BMB system (10), (11) is approximated
by Hermite interpolating cubic splines with 2 displacement
degrees of freedom for each beam element. Approximate
state and state sensitivities toθ are computed for several
values of the parameterθ . It is observed that the state
sensitivities for the variousθ values depicted are virtually
indistinguishable. This suggests that for the BMB system
with the chosen parameters, the actualθ value used in
control design may not be critical in regard to controlled
state performance. The authors also examine the sensitivity
of the controller with respect toθ , and these results suggest
that the more robust the controller, the more sensitive it is to
θ . As a means to gain insight into the problem of sensor
placement, the authors examine the control and observer
functional gains. The results suggest that placing sensors
near the endpoints of the free ends of the beams may prove
advantageous to control design.

B. Future Works

Numerical instabilities in solving the finite dimensional
approximations to the algebraic Riccati equations were dis-
covered, and this needs to be investigated. More investigation
needs to be done on the sensor placement problem in order
to take into account sensor placement effects on performance
and robustness. Instead of considering a point load between
the two beams, the authors are interested in including in the
BMB model a mass of some nonzero size. The authors plan
to include a realistic aerodynamic force for the lift function.
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Issues of Scale in Agile Micro Autonomous Systems 

Johnny H. Evers 
Air Force Research Lab, Munitions Directorate, Eglin AFB, FL 32542 

The quest for micro autonomous systems (MAS) is taking us from the realms of science 
and engineering, as with the University of California at Berkeley micro mechanical flying 
insect, to areas that would have been the realm of science fiction just a few years ago, as in 
Darpa’s Nano Air Vehicle program. Emboldened by advances in micro-scale technologies 
and inspired by insight into the mechanisms associated with biological locomotion, eventual 
realization of bird or insect size autonomous robots seems certain. Among the many 
technical challenges, issues associated with integration of MAS into complex human-directed 
information networks, in particular issues of autonomous sensory-response architectures for 
systems with multi-scale dynamics, may prove to be the largest hurdles. This paper 
speculates on the existence of a fundamental characteristic of autonomous systems that may 
underlie those hurdles. 

I. Introduction 
UMAN engineered systems increasingly rely on automation to enhance performance, provide fault tolerance 
and allow the operator to concentrate on high-level decisions as opposed to low-level motor control tasks. 

These systems are designed to be responsive to human-generated commands but at the same time robust to 
disturbances that may require corrections several orders of magnitude faster than human response times. Advanced 
fighter aircraft, for example, maneuver at the edge of human sensory-response capabilities by having autopilots that 
stabilize the aircraft through operating regimes beyond the capabilities of direct human control. Artificial limits on 
the aircraft operational envelope, which are imposed on the aircraft performance to accommodate the limitations of 
human physiology and sensory-response capabilities, are made necessary by the critical role of the human as pilot of 
the vehicle. In effect, the human operated fighter aircraft has an outer-loop/inner-loop flight control system in which 
the pilot provides the sensing, decision processing and command functions to the inner-loop autopilot which, in turn, 
stabilizes the aircraft flight during maneuvers. This time- or frequency-based separation into a relatively high-
bandwidth inner stabilization loop and a lower-bandwidth outer command loop is a common control system 
architecture that requires the physical response of the vehicle in its interactions with its surroundings to be separable 
into fast and slow dynamics. While this separation is usual and physically justified in manned aircraft and large 
UAVs, it may not be applicable to agile MAS capable of aggressive maneuvers in confined space where the relative 
kinematics between a MAS and other nearby objects may require a response bandwidth on the same time scale as 
the MAS body rotational dynamics. Imposing the usual separation of slow and fast dynamics on a MAS design, for 
example by reducing its response bandwidth to mitigate coupling with its body dynamics, will result in stable but 
sluggish vehicles that have only limited agility.  

Of course, the vision is for MAS to achieve or even exceed the agility, performance and robustness of living 
systems. We entertain notions of small groups of MAS capable of flight through urban centers much like flocks of 
ubiquitous pigeons (Figure 1). These flocks of engineered vehicles would have the flight capabilities of flying 
animals but will be under the overall supervision of one or more human operators. That is, the MAS would require 
significant autonomous flight capabilities to negotiate the confined and high uncertainty environment while 
requiring positive human control of the vehicle swarm. Putting aside the various ethical issues of associated with use 
of autonomous vehicles in human-occupied environments, the challenges imposed by the multi-scale dynamics 
inherent in this scenario are large. Human command and decision processes may span minutes to days, while the 
dynamics associated with micro-scale flight may evolve over milliseconds. Errors at the human decision level have 
obvious potential to impact the overall system performance, from failure to perceive and act upon a critical piece of 
information to issuing erroneous commands. Similarly, errors at the MAS level propagate upward to the human 
decision level, producing gaps in critical information or distorting the context of otherwise correct information. The 
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emergent consequences of these different scales of errors are impossible to predict with our current system modeling 
tools. Thus, consequences of a MAS’s erroneous positive response to a benign chemical signature may be 
negligible, merely resulting in the vehicle flying into a nearby window and disrupting a peaceful family dinner. 
Alternatively the consequences may be tragic, prompting escalation of a minor into a major disaster. Unfortunately, 
our capabilities of engineering MAS seem to be outpacing our understanding of how to incorporate them into fault 
resistant human decision networks. 

 

 
Figure 1.  Group of agile MAS entering an urban canyon 

 
This paper takes the perspective that agile MAS with their layers of human supervision represent complex, 

highly nonlinear multi-scale dynamical systems. After a brief discussion of some issues of scale for such systems 
and current research investigating those issues, the paper will focus on the idea of autonomy associated with multi-
scale dynamical systems. Agile MAS currently exist only in nature (i.e., insects, birds, bats). Consequently, the 
paper will consider autonomy in manmade MAS from a biological perspective. That is, it will speculate that 
functional system characteristics associated with the capabilities of living flying organisms may require levels of 
response variation and flexibility that are not associated with, and perhaps will not be tolerated in manmade critical 
systems. Although this paper will not directly address questions of ethics associated with the deployment of critical 
autonomous systems, it will attempt to provide some insight into how those important questions may naturally 
emerge when any degree of robustness is imposed as a design criterion for manmade agile autonomous systems.  

 
II. Automatic Control 

For present purposes, ‘dynamical systems’ can be thought of as systems which evolve through time. 
Mathematically their behavior can be described by combinations of differential or difference equations. In addition 
to familiar examples such as objects in motion, fluid flow and heat flow, this definition also covers modern 
‘information networks’ such as human decision systems, the internet, networked communication systems, and 
command & control systems.  

Dynamical systems which evolve over a narrow time scale range can be characterized using a rich body of 
descriptive and computational mathematics. An automobile operating on cruise control provides a familiar example. 
A complete description of all of the dynamics associated with engine, friction and aerodynamic forces is of 
extremely high order. It involves time scales ranging from those of the combustion processes, motion induced 
aerodynamic turbulence and heat flux during severe braking to those of the vehicle accelerator response, certainly 
several orders of magnitude. While on cruise control however, the vehicle accelerates or decelerates in response to 
road grade or wind variations to maintain a relatively constant speed. In this cruise mode, the dominant dynamics 
associated with the vehicle motion are adequately described as a compact set of 3 linear 1st order differential 
equations with a time constant on the order of seconds. Actually most familiar manmade systems, whether home 
heating/cooling systems, home power generators or automatically piloted commercial aircraft are designed to exhibit 
this sort of relatively linear, narrow bandwidth response. 
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Some manmade systems do not lend themselves to such a compact mathematical description. The most agile air 
vehicles currently produced, tactical air intercept homing missiles, provide an interesting example of a wide-scale 
dynamical system. A reasonably minimal description of such a missile during the later phases of a target 
engagement would be of relatively high order and highly nonlinear. These dynamics would include the target 
detection and warhead event, associated with fractions of millisecond time constants; the vehicle rigid body 
dynamics, having 10s of millisecond time constants; and the intercept kinematics, having 100s of millisecond time 
constants. As is typical for such systems, during the design process these different time scale dynamics are treated 
separately. The warhead and target detection system are designed separately from the missile autopilot; the autopilot 
is designed to stabilize the body rotational dynamics and to achieve the guidance system commanded accelerations; 
and the guidance system is designed generate acceleration commands to steer the missile close to an intercept with 
the target.1 

Continuing with this example, a missile developed to intercept high agility targets requires guidance systems 
capable of high bandwidth response (i.e., small time constants). This, in turn, requires that the autopilot have a much 
higher bandwidth response, typically with 0.2 or smaller time constants than that of the guidance system. Of course 
the airframe itself must be capable of achieving such small response time constants. For example, consider how fast 
you can move a long flexible fishing rod versus a short stiff one. Move the long flexible rod relatively slowly and 
the rod tip will follow the hand motion. Move it more quickly and the tip motion will be out of phase with the hand 
motion. The short stiff rod, however, may be moved as quickly as you can with minimal deflection. Likewise, the 
missile airframe must be stiff enough to produce the accelerations required to intercept the target. The design of a 
wide bandwidth system such this challenges the capabilities of the tools of automatic control.2 

Automatically controlled dynamical systems have become pervasive in our technology-based society. From 
climate control systems in homes and buildings to automated aircraft landing systems, the notion of manmade 
systems responding to changing conditions on their own has become a familiar one. The idea of sensing some error 
in desired response and generating a correction proportional to that error is intuitive and has its origin in antiquity. A 
textbook example is that of the mechanical governor of James Watt’s steam engine. As engine speed 
increases/decreases, a spinning pendulum device decreases/increases steam to the engine through a mechanical 
linkage. This allows the engine to respond to varying loads with consistent performance without operator 
intervention, a measure of system ‘performance’, and prevents the engine from exceeding its cycling limits if the 
load is abruptly changed, a measure of system ‘robustness’. The rate at which the speed of the governed engine can 
accommodate load variations is a measure of its response bandwidth. Again, it is intuitive that beyond a threshold 
rate, very rapid changes to the engine load will exceed the response capabilities of the engine system. For example, 
this limited response may result from a response latency or time delay in steam flow to increase in engine speed. 
These characteristics of performance, robustness, bandwidth, and time delay sensitivity comprise some of the 
principle figures of merit for any controlled dynamical system. This example also illustrates another key feature of 
most automatically controlled dynamical systems: that the operator interacts with the system through modulation of 
the controller. That is, the engine speed is regulated by adjusting the governor rather than directly adjusting the 
steam flow. Thus, the human operator can be thought of as an ‘outer loop controller’, modifying the speed range of 
the engine based on his own sensing processes, with the actual speed of the engine regulated by the ‘inner loop 
controller’, the governor/steam regulator.  
       Manmade automatically controlled machines are usually designed to provide a fairly linear response to 
commands, however nonlinear the underlying dynamics may be. In effect, the controller cancels the undesirable 
dynamics and replaces them with a desired linear dynamical response. Image stabilization in modern digital point 
and shoot cameras provides a rather familiar example of this cancellation of dynamics. Photographer motion is 
sensed and compensated through any of various mechanisms so that much of the motion-induced blur is removed 
from the resulting image. Any photographer motion beyond the bandwidth of the image stabilization system will 
appear as image blur.  

In the early half of the 20th century, mathematicians such as Norbert Wiener and colleagues established 
information and decision theory as a foundation for development of dynamics and control systems theory and 
methodology.3  Beginning with rudimentary notions of feedback (e.g., the modulation of dynamics based on sensed 
signals in Gibb’s mechanical governor) the latter half of the 20th century saw the birth and maturation of theories of 
linear multivariable, linear robust, stochastic linear, adaptive, nonlinear, distributed parameter and cooperative 
control, to name only a few categories. Based on the mathematics of linear algebra, set theory, real and complex 
analysis, optimization and so on, the methodologies and tools available for control system design have become 
essential to the operation of many engineered systems from compact disc players to commercial aircraft.4 

These tools are not without their limitations. To continue the example of a tactical air intercept missile, 
separation of the control design into an inner autopilot stabilization loop and an outer guidance intercept loop 
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imposes an artificial limitation on the missile intercept performance. With a high order dynamics description of the 
coupled intercept kinematics and vehicle body dynamics of sufficient fidelity, a designer can produce a very high-
bandwidth controller that directly computes missile fin deflection commands from measurements of target 
maneuver. Unfortunately, such a controller is very brittle in the sense that its response degrades or even becomes 
unstable in the presence of inevitable errors in the dynamics model, unmodeled time delay, unmodeled high-
frequency dynamics, unpredictable disturbances, uncharacterized sensor noise, and target maneuver uncertainties. 
Throughout the 1990’s, many publications described various attempts to design integrated guidance and control 
systems that recovered some of the response bandwidth sacrificed with inner-outer-loop designs. Few of these 
approaches have been successful in practice for reasons of high design cost (e.g., requiring high-bandwidth 
actuators, extensive tests to produce accurate dynamics models, low noise sensors, low airframe manufacturing 
tolerances, etc.) and lack of real-world robustness, the latter due to a combination of control methodology limitations 
and the realities of operation in stressing environments.5 

Much of the research on integrated guidance and control, and wide-bandwidth control in general, focuses on 
increasing performance rather than robustness. The field of adaptive control instead focuses on increased robustness, 
or equivalently expansion of the performance regime of the system. Adaptive controllers implicitly or explicitly 
learn the unmodeled or unknown system dynamics and modify the control signal to accommodate their impact on 
the desired system response. Early adaptive control methods simply adjusted the controller gain to zero the error 
between desired and actual system output responses. More recent adaptive control schemes inject an additional 
control signal to preserve a system’s nominal response in the face of uncertainty or disturbances. Some of the most 
interesting and useful advances in control theory have occurred in adaptive control theory in the past ten-fifteen 
years. Although useful in process control applications such as chemical processing and plants, the aerospace 
industry has been slow to accept adaptive control. In the past decade however, newer methods for design of adaptive 
controllers have been applied to manned experimental aircraft and precision guided bombs.6,7 

While manmade automatic control systems are common, manmade autonomous systems are not. The reasons 
for this require some explanation of the differences between the two concepts. Essentially all automatic control 
systems are designed to produce desired response in operation over rather narrow operating regimes. This may be 
accomplished through a combination of limiting the response bandwidth (i.e., essentially the closed loop systems 
ignores disturbances, inputs and noise beyond its response bandwidth) and ad hoc limits imposed on the system 
response (e.g., min/max thermostat temperatures, RPM limiters on motor control systems, physical stops on 
actuators, cut-out switches, etc.). These features allow the automatic control system to operate without human 
intervention for long periods, delivering predictable response in the face of outside disturbances; the automobile 
cruise control comes to mind. 

In casual usage, autonomy implies a level of response robustness beyond that associated with more familiar 
automatic control systems, whether adaptive or not. For example, a commercial aircraft autopilot allows steady 
cruise, climb or descent in the presence of varying winds, but an autonomous landing system must allow the aircraft 
to negotiate the far more uncertain wind conditions near the ground. Note, however that these kinds of ‘autonomous’ 
systems are still designed for very predictable response in the presence of an expanded range of uncertain, but 
reasonably characterizable dynamic disturbance conditions. For present purposes, these kinds of systems will be 
considered an elaboration of automatic control systems. 

The concept of autonomy as used in this paper is illustrated by examples from the science fiction genre of 
motion pictures: the spacecraft computer Hal in the movie 2001: A Space Odyssey, the cyber organisms in the 
Terminator movies, or the robot Sonny in the movie I Robot. These fictitious robots demonstrate both high levels of 
response robustness and similarly high levels of flexibility in response. That is, they vary their responses to be 
appropriate to the context of the current and anticipated situations in ways that seem very ‘life-like’. These are 
systems that can be given a mission and allowed to respond as they will during the course of accomplishing the 
mission. This is a very different sort of behavior from that of an automatic control system, whether adaptive or not. 
And it is specifically this kind of behavior that is implied, whether intentionally or not, by many descriptions of 
MAS.8 

To be a bit more specific, this concept of autonomy implies flexible and context-appropriate behavioral 
response in the presence of real world unpredictable external events. Imagine a cooperative group of MAS flying 
through an urban canyon searching for a particular vehicle. These vehicles presumably have the sensory capability 
necessary to detect, identify and track the truck as well as to avoid collision with buildings, signs, power lines and 
each other. Similarly, they presumably have sufficient aerodynamic agility to chase the truck, once it is identified, 
through the congested streets while maneuvering to avoid collisions and to coordinate their efforts. And these 
sensory response capabilities are robust to the high uncertainties associated with urban canyons: wide variations in 
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ambient luminance; surface textures varying from concrete to painted or reflective surfaces; as complex an acoustic 
environment as may be imagined; wind gusts that may exceed the vehicle flight speed; etc.9 

The concluding sections of this paper suggest that the behavior of autonomous mobile systems involves 
variation and flexibility in response that is significantly different from that of manmade automatic control systems, 
whether adaptive or not. And the basis for this point of view begins with the observation that the capabilities 
required for this urban canyon MAS scenario are ‘life-like’, in the sense of that imagined by writers of the movies 
mentioned above. 
 

III. Agility and Autonomy in Biological Flight 
      Although the notion of automatic operation was a rare feature of human technology until the last century, and 
the notion of autonomy as described in the previous section is essentially absent from current human engineered 
mobile systems, autonomy is an inherent feature of biological systems response at all size and temporal scales. 
Somewhat surprisingly, this is an underappreciated fact given the incredible diversity of life processes and life forms 
on the Earth. In order to see this, the response of manmade automatic control systems needs to be contrasted with 
that of biological processes. 

Return to the example of a tactical air intercept missile once again. The missile autopilot is designed to reject 
disturbances and produce airframe acceleration response to guidance commands over a range of altitude and velocity 
conditions that comprise the operational envelope for the missile. Within limits imposed by the autopilot design or 
control surface effectiveness, the autopilot will track whatever commands the guidance law generates and do so with 
a certain error and latency. Analogously, think of using the cruise control to modulate speed to accommodate the 
flow of traffic on an interstate highway. At first glance, this would seem to be similar to the response associated with 
a Peregrine falcon steady flight, perhaps with other hawks, during a seasonal migration.  

The missile guidance system, itself an outer-loop feedback control system for the closed-loop autopilot 
controlled airframe dynamics, estimates the relative motion of the target with respect to the missile and generates 
acceleration commands to maintain an intercept course with the target. As the target maneuvers, the acceleration 
commands to the autopilot are automatically adjusted so that the missile maneuvers to accommodate target motion. 
As long as the acceleration commands do not exceed the autopilot magnitude limits, and the guidance system 
bandwidth is sufficiently low with respect to the autopilot/airframe bandwidth, the autopilot will track the 
commands and the missile will intercept the target within a certain margin of error. Further, the missile guidance 
system can be expected to have been designed in such a way that it will try to maintain an intercept course to the 
target in spite of target attempts to flee or to deceive the missile guidance system. Again, this would seem to be very 
similar to a Peregrine falcon’s predation attempts on a fleeing duck or grouse.  

The predicted performance of a tactical air intercept missile is often characterized by mean and standard 
deviation of the distance of closest approach in Monte Carlo simulation analysis. Reasonable random and bias 
errors, various target maneuvers, and various engagement initial conditions are introduced into a high fidelity 
dynamics simulation of the intercept scenario to account for the dominant uncertainties inherent real world 
scenarios. The missile system designer tries to adjust the various design parameters at his/her disposal to minimize 
expected miss distance (in the sense of mean and variance as measured through the Monte Carlo analysis) over all 
expected engagement conditions. Over the lifespan of the missile type, the design may be further refined based on 
analysis of flight tests or real world engagements. In any event, the design objective can be summed up as producing 
a desired nominal behavior characterized by minimized mean and variance of miss distance (or other suitable figure 
of merit). Further, the design analysis may establish confidence intervals associated with the nominal behavior, a 
measure of system robustness. While the details may differ greatly among other human engineered mobile automatic 
control systems, the design objective of desired nominal behavior over some range of conditions (i.e., robust) seems 
to be nearly universal. 

A perusal of the animal behavior literature at first seems very familiar in the context of the discussion of the 
preceding paragraphs. Biologists make observations of animal responses, whether to artificial stimuli in a laboratory 
experiment or to natural stimuli in the field, characterize the responses using metrics such as mean and standard 
deviation, and establish confidence intervals using various statistical tests. Especially within many biology 
experimental laboratories, there seems to be an almost engineering mindset to describe nominal behavior and 
characterize variations with respect to the nominal. This is only good science! Experiments are carefully designed to 
be replicated a sufficient number of times so that statistical analysis of the results will be valid, allowing readers of 
the published results to infer the relative merits of the conclusions. Plots of response often include error statistics 
that may suggest, especially to the non-biologist, an almost engineered nominal response. This seems to be true 
whether the experiments involve study of behavioral intraspecific interactions among animals; study of the 
neurobiology of animal sensory systems; reconstruction of flight mechanics and aerodynamics of animals flying in 
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wind tunnels; response of physiological processes to perturbations; study of biochemistry associated with metabolic 
processes; study of cellular mass and energy transport mechanisms; or study of protein transcription or nucleic acid 
replication.  

The complexity of biological system responses at all scales requires this kind of approach. In order for an 
experiment or study to be capable of being replicated, which is an obvious requirement of a credible scientific 
endeavor, experimental conditions must be controlled, or the observational study scope narrowly defined, so that 
response and stimuli may be reliably correlated. While this is true with the study of any complex phenomenon, it 
seems to be inherent in essentially every biological study. 

Unfortunately, and this is speculation, it seems that these tendencies to nominal behaviors exist primarily over 
conditions associated with the specific study. An impression one gathers from discussions with biologists or from 
the published literature is that variation in response among different individuals within the same species, or even 
among subsequent trials with the same individual test subject, is large. Furthermore, this response variation may be 
correlated with very subtle differences among conditions in subsequent experimental setups; differences that would 
seem to be irrelevant in the context of the study.  

Similar impressions arise almost immediately from reading studies of animal social behavior. In vertebrate 
observational studies, behavioral differences among individuals in a social group often allow researchers to 
distinguish individuals at a glance. Read Jane Goodall’s accounts of the Gombe Reserve chimpanzees or George 
Schaller’s studies of lion prides on the Serengeti.10,11 But this also seems to hold to a significant degree for fish 
schools, passerine bird flocks, bat colonies, in fact for any vertebrate group you can think of. Not only do animals 
assume different roles within structured social groups, but the behaviors of different animals playing the same roles 
differ in significant ways. The layperson impression of homogeneity in response for these organisms may only be 
due to limited resolution of the observation (e.g., sheep, and their shepherds, recognize other sheep!). 

Animals typically associated with more stereotyped behavior also seem to exhibit large individual variations in 
response. It has long been known that honeybees change behavioral roles within a colony as they age. Stress, 
variations in food supply, weather conditions and other external conditions can modify the timing of these 
maturation effects. And as with vertebrates, honeybees show individual behavioral differences even within the same 
age class. Again, discussion with insect biology experimentalists leaves one with the impression that insect behavior 
is far from being predictable to the degree that one associates with well-engineered mechanical systems. 
  

IV. Implications for Manmade Autonomous Systems 
        To set the stage for the closing discussion, consider the following behavioral study thought experiment. Choose 
at random 100 missiles of a given model and fire them one at a time against targets of a given type under a range of 
reasonable engagement conditions. Chances are very good that the distributions of miss distances, times to intercept, 
trajectories, etc., would be consistent with, though not identical to those obtained from a Monte Carlo simulation 
study of the same missile model evaluated over a similar range of scenarios. That this is a reasonable expectation 
emerges from two related phenomena: the dynamics models in the simulation have been refined to yield a high 
fidelity representation of the actual scenarios; and the missiles have been designed to yield consistent, reproducible 
desired nominal behavior. This kind of predictable behavior is often termed ‘mechanistic’, even when ascribed to 
human behavior such as that of a choreographed dance performance. 
        Now perform an analogous experiment with a falconer releasing 100 trained Peregrine falcons of similar age 
and training experience one at a time against a sequence of fleeing grouse (recall it is a thought experiment). On any 
given day, the flight performance of a trained bird-of-prey such as a falcon may be influenced by many factors 
including how recently it has eaten, its molt condition, the season, its general state of health, etc. Although these are 
trained animals, one would not be surprised to find the performance variation to be quite large. That is, the spreads 
in the distributions of number of passes to capture, times to capture, paths flown during the pursuit, etc. would be 
large when compared with related figures of merit in the missile experiment. We expect this since animals, after all, 
are animals and their behavior is rarely ‘mechanistic’ in the sense of being highly predictable over long time scales. 
       Finally perform a similar experiment with release of 100 wild, untrained Peregrine falcons, again of similar 
ages, one at a time against a sequence of fleeing grouse. We naturally expect the performance variation to be even 
larger than with the trained animals. The object of the training, after all, is to produce repeatable, predictable desired 
nominal behavior. 
       What does this have to do with design of agile MAS? Even if these observations with respect to biological 
autonomous response are valid as conjectured, correlation of response flexibility with autonomy does not imply 
causation. Biological systems that emerge through the interplay of the complex processes of evolution may exhibit 
response variation as a byproduct of the variations necessary for powering evolution. Certainly, species with highly 
specialized behavior are more seriously affected by environmental change than those with more varied behavioral 
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repertoires. Many of the animal extinctions of the past few centuries involve such ecological or behavioral 
specialists. Hence animals capable of tolerating large ecological perturbations would naturally be supposed to have 
behavioral repertoires, individually and/or collectively, that allow adaptation to the environmental fluctuations. 
       Although correlation certainly does not imply causation, an argument can be developed that suggests behavioral 
response flexibility is, in fact, naturally and intrinsically associated with autonomous behavior. Further, that MAS 
capable of interacting with their surroundings in the complex ways envisioned by technologists will, at the very 
least, exhibit the variations in response associated with highly trained animals (or human groups!) and will not 
exhibit the relative high performance predictability currently associated with automated machines. Anyone who has 
walked a normally well behaved male dog in the vicinity of a female dog in season will appreciate the difference. 
       An outline of such an argument might begin with consideration of autonomous systems that exhibit context-
appropriate behavioral responses to essentially unpredictable events. One might then make the following assertions, 
each of which is disprovable, at least in principle: 

 Real world complex environments, whether natural or manmade, generate unpredictable 
events over behaviorally relevant time and spatial scales 

 It is impossible to model the important dynamics real world complex environments, whether 
natural or manmade, at sufficient levels of fidelity required to a priori define context-
appropriate responses 

 The degree of flexibility associated with a behavioral repertoire, independent of the size of a 
behavioral repertoire, determines the range of context-appropriate responses available 

 The range of context-appropriate responses available determines the range of unpredictable 
events that can be accommodated 

A reasonable inference from these assertions is that environmental complexity drives a requirement for behavioral 
response flexibility and makes it a necessary attribute for any system capable of accommodating uncertainties 
associated with a real world complex environment. This, of course, falls far short of a proof that behavioral response 
flexibility is necessarily associated with autonomous systems, but it motivates consideration of the possibility that 
such might be the case. The possibility merits further investigation. 

If the preceding discussion has merit, the natural question emerges of whether human society is prepared to 
accept that MAS may operate more like trained animals than more familiar automated mechanical devices. We are 
reasonably comfortable with the knowledge that even highly domesticated animals occasionally exhibit undesirable 
behavior. Whether we can become comfortable with the potential for similar behavior from MAS will be an open 
question until such systems arrive.  
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